دورية أكاديمية

Implications of AAV affinity column reuse and vector stability on product quality attributes.

التفاصيل البيبلوغرافية
العنوان: Implications of AAV affinity column reuse and vector stability on product quality attributes.
المؤلفون: Soni H; Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, USA., Lako I; Voyager Therapeutics, Cambridge, Massachusetts, USA., Placidi M; Voyager Therapeutics, Cambridge, Massachusetts, USA., Cramer SM; Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, USA.
المصدر: Biotechnology and bioengineering [Biotechnol Bioeng] 2024 Aug; Vol. 121 (8), pp. 2449-2465. Date of Electronic Publication: 2023 Jul 24.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Wiley Country of Publication: United States NLM ID: 7502021 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1097-0290 (Electronic) Linking ISSN: 00063592 NLM ISO Abbreviation: Biotechnol Bioeng Subsets: MEDLINE
أسماء مطبوعة: Publication: <2005->: Hoboken, NJ : Wiley
Original Publication: New York, Wiley.
مواضيع طبية MeSH: Dependovirus*/genetics , Dependovirus*/chemistry , Genetic Vectors*/chemistry , Genetic Vectors*/genetics , Chromatography, Affinity*/methods, Animals ; Sf9 Cells ; Spodoptera ; Capsid Proteins/chemistry ; Capsid Proteins/genetics
مستخلص: In this work, the implications of AAV9 capsid design and column reuse on AAV9 vector product quality were assessed with POROS CaptureSelect (PCS) AAVX and AAV9 resins using sf9 insect cell-derived model AAV9 vectors with varying viral protein (VP) ratios. Chromatographic experiments with purified drug substance AAV9 model feeds indicated consistent vector elution profiles, independent of adeno-associated virus (AAV) VP ratio, or cycle number. In contrast, the presence of process impurities in the clarified lysate feeds resulted in clear changes in the elution patterns. This included increased aggregate content in the vector eluates over multiple cycles as well as clear differences in the performance of these affinity resin systems. The AAV9-serotype specific PCS AAV9 column, with lower vector elution pH, resulted in higher aggregate content over multiple cycles as compared to the serotype-independent PCS AAVX column. Further, the results with vectors of varying VP ratio indicated that while one vector type eluate displayed higher aggregation in both affinity columns over column reuse, the eluate with the other vector type did not exhibit changes in the aggregation profile. Interestingly, vector aggregates in the affinity eluates also contained double-stranded DNA impurities and histone proteins, with similar trends to the aggregate levels. This behavior upon column reuse indicates that these host cell impurities are likely carried over to subsequent runs due to incomplete clean-in-place (CIP). These results indicate that feed impurities, affinity resin characteristics, elution pH, column CIP, and vector stability can impact the reusability of AAV affinity columns and product quality.
(© 2023 Wiley Periodicals LLC.)
References: Adams, B., Bak, H., & Tustian, A. D. (2020). Moving from the bench towards a large scale, industrial platform process for adeno‐associated viral vector purification. Biotechnology and Bioengineering, 117(10), 3199–3211. https://doi.org/10.1002/bit.27472.
Bernaud, J., Rossi, A., Fis, A., Gardette, L., Aillot, L., Büning, H., Castelnovo, M., Salvetti, A., & Faivre‐Moskalenko, C. (2018). Characterization of AAV vector particle stability at the single‐capsid level. Journal of Biological Physics, 44(2), 181–194. https://doi.org/10.1007/s10867-018-9488-5.
Bolton, G. R., & Mehta, K. K. (2016). The role of more than 40 years of improvement in protein A chromatography in the growth of the therapeutic antibody industry. Biotechnology Progress, 32, 1193–1202. https://doi.org/10.1002/btpr.2324.
Büning, H., & Srivastava, A. (2019). Capsid modifications for targeting and improving the efficacy of AAV vectors. Molecular Therapy‐Methods and Clinical Development, 12, 248–265. https://doi.org/10.1016/j.omtm.2019.01.008.
Cashen, P., & Manser, B. (2021). Quality by design (QbD) for adeno‐associated virus (AAV): A framework for a QbD assessment for AAV products within the chemistry manufacturing and controls (CMC) documentation. https://www.bioprocessonline.com/doc/quality-by-design-qbd-for-adeno-associated-virus-aav-0001.
Dobrowsky, T., Gianni, D., Pieracci, J., & Suh, J. (2021). AAV manufacturing for clinical use: Insights on current challenges from the upstream process perspective. Current Opinion in Biomedical Engineering, 20, 100353. https://doi.org/10.1016/j.cobme.2021.100353.
Dragan, A. I., Casas‐Finet, J. R., Bishop, E. S., Strouse, R. J., Schenerman, M. A., & Geddes, C. D. (2010). Characterization of PicoGreen interaction with dsDNA and the origin of its fluorescence enhancement upon binding. https://doi.org/10.1016/j.bpj.2010.09.012.
El Andari, J., Renaud‐Gabardos, E., Tulalamba, W., Weinmann, J., Mangin, L., Pham, Q. H., Hille, S., Bennett, A., Attebi, E., Bourges, E., Leborgne, C., Guerchet, N., Fakhiri, J., Krämer, C., Wiedtke, E., McKenna, R., Guianvarc'h, L., Toueille, M., Ronzitti, G., … Grimm, D. (2022). Semirational bioengineering of AAV vectors with increased potency and specificity for systemic gene therapy of muscle disorders. Science Advances, 8(38), eabn4704. https://doi.org/10.1126/sciadv.abn4704.
Gagnon, P., Goricar, B., Mencin, N., Zvanut, T., Peljhan, S., Leskovec, M., & Strancar, A. (2021). Multiple‐monitor HPLC assays for rapid process development, in‐process monitoring, and validation of AAV production and purification. Pharmaceutics, 13(1), 113. https://doi.org/10.3390/pharmaceutics13010113.
Gagnon, P., Nian, R., Lee, J., Tan, L., Latiff, S. M. A., Lim, C. L., Chuah, C., Bi, X., Yang, Y., Zhang, W., & Gan, H. T. (2014). Nonspecific interactions of chromatin with immunoglobulin G and protein A, and their impact on purification performance. Journal of Chromatography A, 1340, 68–78. https://doi.org/10.1016/j.chroma.2014.03.010.
Gagnon, P., Nian, R., Leong, D., & Hoi, A. (2015). Transient conformational modification of immunoglobulin G during purification by protein A affinity chromatography. Journal of Chromatography A, 1395, 136–142. https://doi.org/10.1016/j.chroma.2015.03.080.
Gan, H. T., Lee, J., Latiff, S. M. A., Chuah, C., Toh, P., Lee, W. Y., & Gagnon, P. (2013). Characterization and removal of aggregates formed by nonspecific interaction of IgM monoclonal antibodies with chromatin catabolites during cell culture production. Journal of Chromatography A, 1291, 33–40. https://doi.org/10.1016/j.chroma.2013.03.028.
Ghose, S., Allen, M., Hubbard, B., Brooks, C., & Cramer, S. M. (2005). Antibody variable region interactions with protein A: Implications for the development of generic purification processes. Biotechnology and Bioengineering, 92(6), 665–673. https://doi.org/10.1002/BIT.20729.
Guth, A. M., Zhang, X., Smith, D., Detanico, T., & Wysocki, L. J. (2003). Chromatin specificity of anti‐double‐stranded DNA antibodies and a role for Arg residues in the third complementarity‐determining region of the heavy chain. The Journal of Immunology, 171(11), 6260–6266. https://doi.org/10.4049/jimmunol.171.11.6260.
Johnson, F. B., & Bodily, A. S. (1975). Effect of environmental pH on adenovirus‐associated virus. Experimental Biology and Medicine, 150(3), 585–590. https://doi.org/10.3181/00379727-150-39085.
Katsikis, G., Hwang, I. E., Wang, W., Bhat, V. S., Mcintosh, N. L., Karim, O. A., Blus, B. J., Sha, S., Agache, V., Wolfrum, J. M., Springs, S. L., Sinskey, A. J., Barone, P. W., Braatz, R. D., & Manalis, S. R. (2022). Weighing the DNA content of adeno‐associated virus vectors with zeptogram precision using nanomechanical resonators. Nano Letters, 22, 1511–1517. https://doi.org/10.1021/acs.nanolett.1c04092.
Łącki, K. M., & Riske, F. J. (2020). Affinity chromatography: An enabling technology for large‐scale bioprocessing. Biotechnology Journal, 15(1), 1800397. https://doi.org/10.1002/BIOT.201800397.
Le, S. (2022). Is your AAV payload impacting stability? Find out with Aura Gt drug discovery analytical testing. https://www.solvescientific.com.au/wp-content/uploads/2022/02/Application-Note-16-Aura-GT-assessing-AVV-payload-impacting-stability.pdf.
Li, C., & Samulski, R. J. (2020). Engineering adeno‐associated virus vectors for gene therapy. Nature Reviews Genetics, 21(4), 255–272. https://doi.org/10.1038/s41576-019-0205-4.
Luhrs, K. A., Harris, D. A., Summers, S., & Parseghian, M. H. (2009). Evicting hitchhiker antigens from purified antibodies. Journal of Chromatography B, 877(14–15), 1543–1552. https://doi.org/10.1016/j.jchromb.2009.03.042.
Maurer, A. C., Cepeda Diaz, A. K., & Vandenberghe, L. H. (2019). Residues on adeno‐associated virus capsid lumen dictate interactions and compatibility with the assembly‐activating protein. Journal of Virology, 93(7), 2013–2031. https://doi.org/10.1128/JVI.02013-18.
Mazzer, A. R., Perraud, X., Halley, J., O'Hara, J., & Bracewell, D. G. (2015). Protein A chromatography increases monoclonal antibody aggregation rate during subsequent low pH virus inactivation hold. Journal of Chromatography A, 1415, 83–90. https://doi.org/10.1016/j.chroma.2015.08.068.
Mechetner, L., Sood, R., Nguyen, V., Gagnon, P., & Parseghian, M. H. (2011). The effects of hitchhiker antigens co‐eluting with affinity‐purified research antibodies. Journal of Chromatography B, 879(25), 2583–2594. https://doi.org/10.1016/j.jchromb.2011.07.016.
Mietzsch, M., Jose, A., Chipman, P., Bhattacharya, N., Daneshparvar, N., McKenna, R., & Agbandje‐Mckenna, M. (2021). Completion of the aav structural atlas: Serotype capsid structures reveals clade‐specific features. Viruses, 13(1), 101. https://doi.org/10.3390/v13010101.
Nasimuzzaman, M., Villaveces, S., van der Loo, J. C. M., & Alla, S. (2022). Process development for the production and purification of adeno‐associated virus (AAV)2 vector using Baculovirus‐insect cell culture system. Journal of Visualized Experiments, 13(179), e62829. https://doi.org/10.3791/62829.
Nass, S. A., Mattingly, M. A., Woodcock, D. A., Burnham, B. L., Ardinger, J. A., Osmond, S. E., Frederick, A. M., Scaria, A., Cheng, S. H., & O'Riordan, C. R. (2018). Universal method for the purification of recombinant AAV vectors of differing serotypes. Molecular Therapy‐Methods & Clinical Development, 9, 33–46. https://doi.org/10.1016/j.omtm.2017.12.004.
Oh, Y. H., Becker, M. L., Mendola, K. M., Choe, L. H., Min, L., Lee, K. H., Yigzaw, Y., Seay, A., Bill, J., Li, X., Roush, D. J., Cramer, S. M., Menegatti, S., & Lenhoff, A. M. (2022). Characterization and implications of host‐cell protein aggregates in biopharmaceutical processing. Biotechnology and Bioengineering, 120(4), 1068–1080. https://doi.org/10.1002/bit.28325.
Pathak, M., & Rathore, A. S. (2016). Mechanistic understanding of fouling of protein A chromatography resin. Journal of Chromatography A, 1459, 78–88. https://doi.org/10.1016/j.chroma.2016.06.084.
Pupo, A., Fernández, A., Low, S. H., François, A., Suárez‐Amarán, L., & Samulski, R. J. (2022). AAV vectors: The Rubik's cube of human gene therapy. Molecular Therapy, 30(12), 3515–3541. https://doi.org/10.1016/j.ymthe.2022.09.015.
Rayaprolu, V., Kruse, S., Kant, R., Venkatakrishnan, B., Movahed, N., Brooke, D., Lins, B., Bennett, A., Potter, T., McKenna, R., Agbandje‐McKenna, M., & Bothner, B. (2013). Comparative analysis of adeno‐associated virus capsid stability and dynamics. Journal of Virology, 87(24), 13150–13160. https://doi.org/10.1128/jvi.01415-13.
Sandro, Q., Relizani, K., & Benchaouir, R. (2019). AAV production using baculovirus expression vector system. Methods in Molecular Biology, 1937, 91–99. https://doi.org/10.1007/978-1-4939-9065-8&#95;5.
Schiessel, H. (2003). The physics of chromatin. Journal of Physics: Condensed Matter, 15, 699–774. https://doi.org/10.1088/0953-8984/27/6/060301.
Šiber, A., Božič, A. L., & Podgornik, R. (2012). Energies and pressures in viruses: Contribution of nonspecific electrostatic interactions. Physical Chemistry Chemical Physics, 14(11), 3746–3765. https://doi.org/10.1039/c1cp22756d.
Srivastava, A., Mallela, K. M. G., Deorkar, N., & Brophy, G. (2021). Manufacturing challenges and rational formulation development for AAV viral vectors. Journal of Pharmaceutical Sciences, 110(7), 2609–2624. https://doi.org/10.1016/J.XPHS.2021.03.024.
Strasser, L., Morgan, T. E., Guapo, F., Füssl, F., Forsey, D., Anderson, I., & Bones, J. (2021). A native mass spectrometry‐based assay for rapid assessment of the empty: Full capsid ratio in adeno‐associated virus gene therapy products. Analytical Chemistry, 93(38), 12817–12821. https://doi.org/10.1021/acs.analchem.1c02828.
Tan, L., Yeo, V., Yang, Y., & Gagnon, P. (2015). Characterization of DNA in cell culture supernatant by fluorescence‐detection size‐exclusion chromatography. Analytical and Bioanalytical Chemistry, 407(14), 4173–4181. https://doi.org/10.1007/s00216-015-8639-9.
Trivedi, P. D., Yu, C., Chaudhuri, P., Johnson, E. J., Caton, T., Adamson, L., Byrne, B. J., Paulk, N. K., & Clément, N. (2022). Comparison of highly pure rAAV9 vector stocks produced in suspension by PEI transfection or HSV infection reveals striking quantitative and qualitative differences. Molecular Therapy‐Methods & Clinical Development, 24, 154–170. https://doi.org/10.1016/j.omtm.2021.12.006.
Tustian, A. D., & Bak, H. (2021). Assessment of quality attributes for adeno‐associated viral vectors. Biotechnology and Bioengineering, 118(11), 4186–4203. https://doi.org/10.1002/BIT.27905.
Wang, D., Tai, P. W. L., & Gao, G. (2019). Adeno‐associated virus vector as a platform for gene therapy delivery. Nature Reviews Drug Discovery, 18(5), 358–378. https://doi.org/10.1038/s41573-019-0012-9.
Wörner, T. P., Bennett, A., Habka, S., Snijder, J., Friese, O., Powers, T., Agbandje‐McKenna, M., & Heck, A. J. R. (2021). Adeno‐associated virus capsid assembly is divergent and stochastic. Nature Communications, 12(1), 1642. https://doi.org/10.1038/s41467-021-21935-5.
Wright, J. F., Le, T., Prado, J., Bahr‐Davidson, J., Smith, P. H., Zhen, Z., Sommer, J. M., Pierce, G. F., & Qu, G. (2005). Identification of factors that contribute to recombinant AAV2 particle aggregation and methods to prevent its occurrence during vector purification and formulation. Molecular Therapy, 12(1), 171–178. https://doi.org/10.1016/j.ymthe.2005.02.021.
Yin, J. (2009). Nucleic acid induced protein aggregation and its role in biology and pathology. Frontiers in Bioscience, 14(13), 5084–5106. https://doi.org/10.2741/3588.
Zeng, C., Moller‐Tank, S., Asokan, A., & Dragnea, B. (2017). Probing the link among genomic cargo, contact mechanics, and nanoindentation in recombinant adeno‐associated virus 2. The Journal of Physical Chemistry B, 121(8), 1843–1853. https://doi.org/10.1021/acs.jpcb.6b10131.
Zoratto, S., Weiss, V. U., Horst, J., Commandeur, J., Buengener, C., Foettinger‐Vacha, A., Pletzenauer, R., Graninger, M., & Allmaier, G. (2021). Molecular weight determination of adeno‐associate virus serotype 8 virus‐like particle either carrying or lacking genome via native nES gas‐phase electrophoretic molecular mobility analysis and nESI QRTOF mass spectrometry. Journal of Mass Spectrometry, 56(11), e4786. https://doi.org/10.1002/jms.4786.
معلومات مُعتمدة: Voyager Therapeutics
فهرسة مساهمة: Keywords: adeno‐associated virus (AAV); affinity column reuse; aggregates; gene therapy; product quality; viral protein
المشرفين على المادة: 0 (Capsid Proteins)
تواريخ الأحداث: Date Created: 20230724 Date Completed: 20240724 Latest Revision: 20240724
رمز التحديث: 20240725
DOI: 10.1002/bit.28500
PMID: 37485847
قاعدة البيانات: MEDLINE
الوصف
تدمد:1097-0290
DOI:10.1002/bit.28500