دورية أكاديمية

Design and evaluation of shape memory alloy-actuated active needle using finite element analysis and deflection tracking control in soft tissues.

التفاصيل البيبلوغرافية
العنوان: Design and evaluation of shape memory alloy-actuated active needle using finite element analysis and deflection tracking control in soft tissues.
المؤلفون: Acharya SR; Department of Mechanical Engineering, Temple University, Philadelphia, Pennsylvania, USA., Hutapea P; Department of Mechanical Engineering, Temple University, Philadelphia, Pennsylvania, USA.
المصدر: The international journal of medical robotics + computer assisted surgery : MRCAS [Int J Med Robot] 2023 Oct; Vol. 19 (5), pp. e2554. Date of Electronic Publication: 2023 Jul 24.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Wiley Country of Publication: England NLM ID: 101250764 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1478-596X (Electronic) Linking ISSN: 14785951 NLM ISO Abbreviation: Int J Med Robot Subsets: MEDLINE
أسماء مطبوعة: Publication: 2006- : West Sussex, England : Wiley
Original Publication: Ilkley, UK : Robotic Publications, c2004-
مواضيع طبية MeSH: Needles* , Shape Memory Alloys*, Male ; Humans ; Finite Element Analysis ; Computer Simulation ; Gels
مستخلص: Background: Conventional needles lack active mechanisms for large tip deflection to bypass obstacles or guide through a desired trajectory in needle-based procedures, compromising accuracy and effectiveness.
Methods: An active needle with a shape memory alloy (SMA) actuator was designed and evaluated by demonstrating deflections in tissue-mimicking gels. Finite element simulation and real-time needle tip deflection tracking in tissue-mimicking gels were performed.
Results: The active needle deflected 50 and 39 mm at 150 mm insertion depth in the liver and prostate mimicking gels, respectively. Reasonable simulation errors of 16.42% and 12.62% in needle deflections and small root mean squared errors of 1.42 and 1.47 mm in deflection tracking were obtained.
Conclusions: The proposed needle produced desirable large tip deflections capable of bypassing obstacles in the insertion path and tracked a preplanned trajectory with minor errors. The finite element study would help optimise needle designs and predict deflections in soft tissues.
(© 2023 John Wiley & Sons Ltd.)
References: De Jong TL, Van De Berg NJ, Tas L, Moelker A, Dankelman J, Van Den Dobbelsteen JJ. Needle placement errors: do we need steerable needles in interventional radiology? Medical devices (Auckland, NZ). 2018;11:259-265. https://doi.org/10.2147/mder.s160444.
Webster RJ, III, Kim JS, Cowan NJ, Chirikjian GS, Okamura AM. Nonholonomic modeling of needle steering. Int J Robotics Res. 2006;25(5-6):509-525. https://doi.org/10.1177/0278364906065388.
DiMaio SP, Salcudean SE. Needle steering and model-based trajectory planning. In: International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer; 2003:33-40.
Glozman D, Shoham M. Flexible needle steering and optimal trajectory planning for percutaneous therapies. In: International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer; 2004:137-144.
Potamianos, P, Davies, BL, & Hibberd, RD (1994). Intra-operative imaging guidance for keyhole surgery methodology and calibration (Vol. 1, pp. 98-104).
Koyama H, Uchida T, Funakubo H, Takakura K, Fankhauser H. Development of a new microsurgical robot for stereotactic neurosurgery. Stereotact Funct Neurosurg. 1990;54(1-8):462-467. https://doi.org/10.1159/000100255.
Blasko JC, Mate T, Sylvester JE, Grimm PD, Cavanagh W. Brachytherapy for carcinoma of the prostate: techniques, patient selection, and clinical outcomes. Seminars Radiat Oncol. 2002;12(No. 1):81-94. WB Saunders. https://doi.org/10.1053/srao.2002.28667.
Podder TK, Dicker AP, Hutapea P, Darvish K, Yu Y. A novel curvilinear approach for prostate seed implantation. Med Phys. 2012;39(4):1887-1892. https://doi.org/10.1118/1.3694110.
van de Berg NJ, van Gerwen DJ, Dankelman J, van den Dobbelsteen JJ. Design choices in needle steering - a review. IEEE/ASME Trans Mechatronics. 2014;20(5):2172-2183. https://doi.org/10.1109/tmech.2014.2365999.
van de Berg NJ, Dankelman J, van den Dobbelsteen JJ. Design of an actively controlled steerable needle with tendon actuation and FBG-based shape sensing. Med Eng Phys. 2015;37(6):617-622. https://doi.org/10.1016/j.medengphy.2015.03.016.
Datla NV, Honarvar M, Nguyen TM, et al. Towards a nitinol actuator for an active surgical needle. In: Smart Materials, Adaptive Structures and Intelligent Systems. Vol 45103; 2012:265-269. American Society of Mechanical Engineers.
Datla NV, Hutapea P. Flexure-based active needle for enhanced steering within soft tissue. J Med Dev Trans ASME. 2015;9(4). https://doi.org/10.1115/1.4030654.
Ayvali E, Liang CP, Ho M, Chen Y, Desai JP. Towards a discretely actuated steerable cannula for diagnostic and therapeutic procedures. Int J Robotic Res. 2012;31(5):588-603. https://doi.org/10.1177/0278364912442429.
Ryu SC, Quek ZF, Koh JS, et al. Design of an optically controlled MR-compatible active needle. IEEE Trans Robot. 2014;31(1):1-11. https://doi.org/10.1109/tro.2014.2367351.
Acharya SR, Hutapea P. Towards clinically-relevant shape memory alloy actuated active steerable needle. Smart Mater Adapt Struct Intelligent Syst. 2021;85499. American Society of Mechanical Engineers.
Acharya SR, Hutapea P. Design and control strategy of tip manipulation for shape memory alloy actuated steerable needle. Smart Mater Adapt Struct Intelligent Syst. 2022;86274. American Society of Mechanical Engineers.
Tanaka K. A thermomechanical sketch of shape memory effect: one-dimensional tensile behavior. Res Mech. 1986;18:251-263.
Liang C, Rogers CA. A multi-dimensional constitutive model for shape memory alloys. J Eng Math. 1992;26(3):429-443. https://doi.org/10.1007/bf00042744.
Brinson LC. One-dimensional constitutive behavior of shape memory alloys: thermomechanical derivation with non-constant material functions and redefined martensite internal variable. J Intell Mater Syst Struct. 1993;4(2):229-242. https://doi.org/10.1177/1045389x9300400213.
Souza AC, Mamiya EN, Zouain N. Three-dimensional model for solids undergoing stress-induced phase transformations. Eur J Mech Solid. 1998;17(5):789-806. https://doi.org/10.1016/s0997-7538(98)80005-3.
Auricchio F, Reali A, Stefanelli U. A three-dimensional model describing stress-induced solid phase transformation with permanent inelasticity. Int J Plast. 2007;23(2):207-226. https://doi.org/10.1016/j.ijplas.2006.02.012.
Boyd JG, Lagoudas DC. Thermomechanical response of shape memory composites. J Intell Mater Syst Struct. 1994;5(3):333-346. https://doi.org/10.1177/1045389x9400500306.
Lagoudas DC, Bo Z, Qidwai MA. A unified thermodynamic constitutive model for SMA and finite element analysis of active metal matrix composites. Mech Compos Mater Struct. 1996;3(2):153-179. https://doi.org/10.1080/10759419608945861.
Qidwai MA, Lagoudas DC. Numerical implementation of a shape memory alloy thermomechanical constitutive model using return mapping algorithms. Int J Numer Methods Eng. 2000;47(6):1123-1168. https://doi.org/10.1002/(sici)1097-0207(20000228)47:6<1123::aid-nme817>3.0.co;2-n.
Popov P, Lagoudas DC. A 3-D constitutive model for shape memory alloys incorporating pseudoelasticity and detwinning of self-accommodated martensite. Int J Plast. 2007;23(10-11):1679-1720. https://doi.org/10.1016/j.ijplas.2007.03.011.
Lagoudas D, Bo Z, Qidwai M, Entchev P. Texas A&M University College Station TX; 2003.SMA um: user material subroutine for thermomechanical constitutive model of shape memory alloys.
Stroud H, Hartl D. Shape memory alloy torsional actuators: a review of applications, experimental investigations, modeling, and design. Smart Mater Struct. 2020;29(11):113001. https://doi.org/10.1088/1361-665x/abbb12.
Oehler SD, Hartl DJ, Lopez R, Malak RJ, Lagoudas DC. Design optimization and uncertainty analysis of SMA morphing structures. Smart Mater Struct. 2012;21(9):094016. https://doi.org/10.1088/0964-1726/21/9/094016.
Azaouzi M, Makradi A, Belouettar S. Deployment of a self-expanding stent inside an artery: a finite element analysis. Mater Des. 2012;41:410-420. https://doi.org/10.1016/j.matdes.2012.05.019.
Lagoudas D, Hartl D, Chemisky Y, Machado L, Popov P. Constitutive model for the numerical analysis of phase transformation in polycrystalline shape memory alloys. Int J Plast. 2012;32:155-183. https://doi.org/10.1016/j.ijplas.2011.10.009.
COMSOL Multiphysics® v. 5.5. COMSOL AB. www.comsol.com.
Joseph FOM, Podder T. Sliding mode control of a shape memory alloy actuated active flexible needle. Robotica. 2018;36(8):1188-1205. https://doi.org/10.1017/s0263574718000334.
Ruiz B, Hutapea P, Darvish K, Dicker A, Yu Y, Podder TK. SMA actuated flexible needle control using EM sensor feedback for prostate brachytherapy. In: IEEE International Conference on Robotic and Automation (ICRA) 2012 Needle Steering Workshop; 2012.
Shao S, Sun B, Ding Q, et al. Design, modeling, and control of a compact SMA-actuated MR-conditional steerable neurosurgical robot. IEEE Rob Autom Lett. 2020;5(2):1381-1388. https://doi.org/10.1109/LRA.2020.2967297.
Su H, Shang W, Cole G, et al. Piezoelectrically actuated robotic system for MRI-guided prostate percutaneous therapy. IEEE/ASME Trans mechatronics. 2014;20(4):1920-1932. https://doi.org/10.1109/tmech.2014.2359413.
Musa MJ, Sharma K, Cleary K, Chen Y. Respiratory compensated robot for liver cancer treatment: design, fabrication, and benchtop characterization. IEEE/ASME Trans Mechatronics. 2021;27(1):268-279. https://doi.org/10.1109/tmech.2021.3062984.
Strassmann G, Olbert P, Hegele A, et al. Advantage of robotic needle placement on a prostate model in HDR brachytherapy. Strahlenther Onkol. 2011;187(6):367-372. https://doi.org/10.1007/s00066-011-2185-y.
Adebar TK, Greer JD, Laeseke PF, Hwang GL, Okamura AM. Methods for improving the curvature of steerable needles in biological tissue. IEEE (Inst Electr Electron Eng) Trans Biomed Eng. 2015;63(6):1167-1177. https://doi.org/10.1109/tbme.2015.2484262.
Datla NV, Konh B, Hutapea P. Studies with SMA actuated needle for steering within tissue. Smart Mater Adapt Struct Intelligent Syst. 2014;46155. American Society of Mechanical Engineers.
Dynalloy Inc. Technical Characteristics of Flexinol Actuator Wires. Dynalloy Inc.; 2016. [Online]. http://www.dynalloy.com/pdfs/TCF1140.pdf.
Zak AJ, Cartmell MP, Ostachowicz WM, Wiercigroch M. One-dimensional shape memory alloy models for use with reinforced composite structures. Smart Mater Struct. 2003;12(3):338-346. https://doi.org/10.1088/0964-1726/12/3/304.
Choon TW, Salleh AS, Jamian S, Ghazali MI. Phase transformation temperatures for shape memory alloy wire. World Academy of Science, Engineering and Technology. 2007;25(304).
Stebner AP, Brinson LC. Explicit finite element implementation of an improved three-dimensional constitutive model for shape memory alloys. Comput Methods Appl Mech Eng. 2013;257:17-35. https://doi.org/10.1016/j.cma.2012.12.021.
Nonlinear Structural Materials Module Application Library Manual. COMSOL, (2017).
Analyzing an Arterial Self-Expanding Stent with COMSOL Multiphysics. https://www.comsol.com/blogs/analyzing-an-arterial-self-expanding-stent-with-comsol%20multiphysics/, last accessed 01.08.2023.
Simone F, Rizzello G, Seelecke S. A finite element framework for a shape memory alloy actuated finger. J Intell Mater Syst Struct. 2019;30(14):2052-2064. https://doi.org/10.1177/1045389x19861787.
Lagoudas DC, ed. Shape memory alloys: modeling and engineering applications. Springer Science & Business Media; 2008.
Lehmann T, Tavakoli M, Usmani N, Sloboda R. Force-sensor-based estimation of needle tip deflection in brachytherapy. J Sens. 2013;2013:1-10. https://doi.org/10.1155/2013/263153.
Lehmann T, Rossa C, Usmani N, Sloboda R, Tavakoli M. A virtual sensor for needle deflection estimation during soft-tissue needle insertion. In: 2015 IEEE International Conference on Robotics and Automation (ICRA). IEEE; 2015:1217-1222.
Koch A, Horn A, Dückers H, et al. Increased liver stiffness denotes hepatic dysfunction and mortality risk in critically ill non-cirrhotic patients at a medical ICU. Crit Care. 2011;15(6):1-15. https://doi.org/10.1186/cc10543.
Ahn BM, Kim J, Ian L, Rha KH, Kim HJ. Mechanical property characterization of prostate cancer using a minimally motorized indenter in an ex vivo indentation experiment. Urology. 2010;76(4):1007-1011. https://doi.org/10.1016/j.urology.2010.02.025.
Li W, Belmont B, Shih A. Design and manufacture of polyvinyl chloride (PVC) tissue mimicking material for needle insertion. Procedia Manuf. 2015;1:866-878. https://doi.org/10.1016/j.promfg.2015.09.078.
Misra S, Reed KB, Schafer BW, Ramesh KT, Okamura AM. Mechanics of flexible needles robotically steered through soft tissue. Int J robotics Res. 2010;29(13):1640-1660. https://doi.org/10.1177/0278364910369714.
Labviewmakerhub.com. LINX [LabVIEW MakerHub]. [online]. Accessed September 2022. https://www.labviewmakerhub.com/%A0doku.php?id=libraries:linx:start.
Villoslada Á, Escudero N, Martín F, et al. Position control of a shape memory alloy actuator using a four-term bilinear PID controller. Sensors Actuators A Phys. 2015;236:257-272. https://doi.org/10.1016/j.sna.2015.10.006.
Kha NB, Ahn KK. Position control of shape memory alloy actuators by using self tuning fuzzy PID controller. In: 2006 1ST IEEE conference on industrial electronics and applications. IEEE; 2006:1-5.
Hoseini SF, MirMohammadSadeghi SA, Fathi A, Daniali HM. Adaptive predictive control of a novel shape memory alloy rod actuator. Proc Inst Mech Eng J Syst Control Eng. 2021;235(3):291-301. https://doi.org/10.1177/0959651820974488.
Reed KB, Okamura AM, Cowan NJ. Modeling and control of needles with torsional friction. IEEE Trans Biomed Eng. 2009;56(12):2905-2916. https://doi.org/10.1109/tbme.2009.2029240.
Deaton NJ, Brumfiel TA, Sheft M, Elliott D, Patel P, Desai JP. Towards steering a high-dose rate brachytherapy needle with a robotic steerable stylet. IEEE Transactions on Medical Robotics and Bionics. 2023;5(1):54-65. https://doi.org/10.1109/tmrb.2023.3237861.
Sahlabadi M, Zhao Y, Jezler K, et al. Polydopamine coating for thermal insulation of shape memory alloy wires. Smart Mater Adapt Struct Intelligent Syst. 2016;50480. American Society of Mechanical Engineers.
معلومات مُعتمدة: CMMI Award #1917711 National Science Foundation; Division of Civil, Mechanical and Manufacturing Innovation
فهرسة مساهمة: Keywords: FEA; SMA; active needle; deflection; needle-tissue interaction; tracking
المشرفين على المادة: 0 (Shape Memory Alloys)
0 (Gels)
تواريخ الأحداث: Date Created: 20230725 Date Completed: 20230905 Latest Revision: 20230905
رمز التحديث: 20240628
DOI: 10.1002/rcs.2554
PMID: 37489047
قاعدة البيانات: MEDLINE
الوصف
تدمد:1478-596X
DOI:10.1002/rcs.2554