دورية أكاديمية

Managing Cardiovascular and Cancer Risk Associated with JAK Inhibitors.

التفاصيل البيبلوغرافية
العنوان: Managing Cardiovascular and Cancer Risk Associated with JAK Inhibitors.
المؤلفون: Yang V; Department of Rheumatology, Level 1, North Wing, Heidelberg Repatriation Hospital, Austin Health, 300 Waterdale Road, PO Box 5444, Heidelberg West, VIC, 3081, Australia., Kragstrup TW; Department of Rheumatology, Aarhus University Hospital, Aarhus, Denmark.; Department of Biomedicine, Aarhus University, Aarhus, Denmark.; Sector for Rheumatology, Diagnostic Center, Silkeborg Regional Hospital, Silkeborg, Denmark., McMaster C; Department of Rheumatology, Level 1, North Wing, Heidelberg Repatriation Hospital, Austin Health, 300 Waterdale Road, PO Box 5444, Heidelberg West, VIC, 3081, Australia.; Department of Clinical Pharmacology and Therapeutics, Austin Health, Melbourne, VIC, Australia.; Centre for Digital Transformation of Health, University of Melbourne, Melbourne, VIC, Australia., Reid P; Division of Rheumatology and Committee on Clinical Pharmacology and Pharmacogenomics, Department of Medicine, University of Chicago Biological Sciences Division, Chicago, IL, USA., Singh N; Division of Rheumatology, Department of Medicine, University of Washington, Seattle, WA, USA., Haysen SR; Department of Biomedicine, Aarhus University, Aarhus, Denmark., Robinson PC; Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia.; Royal Brisbane and Women's Hospital, Metro North Hospital and Health Service, Herston, QLD, Australia., Liew DFL; Department of Rheumatology, Level 1, North Wing, Heidelberg Repatriation Hospital, Austin Health, 300 Waterdale Road, PO Box 5444, Heidelberg West, VIC, 3081, Australia. david.liew@austin.org.au.; Department of Clinical Pharmacology and Therapeutics, Austin Health, Melbourne, VIC, Australia. david.liew@austin.org.au.; Department of Medicine, University of Melbourne, Melbourne, VIC, Australia. david.liew@austin.org.au.
المصدر: Drug safety [Drug Saf] 2023 Nov; Vol. 46 (11), pp. 1049-1071. Date of Electronic Publication: 2023 Jul 25.
نوع المنشور: Journal Article; Review
اللغة: English
بيانات الدورية: Publisher: Adis, Springer International Country of Publication: New Zealand NLM ID: 9002928 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1179-1942 (Electronic) Linking ISSN: 01145916 NLM ISO Abbreviation: Drug Saf Subsets: MEDLINE
أسماء مطبوعة: Publication: Auckland : Adis, Springer International
Original Publication: [Mairangi Bay, Auckland, N.Z. : ADIS Press Limited, c1990-
مواضيع طبية MeSH: Janus Kinase Inhibitors*/adverse effects , Arthritis, Rheumatoid*/complications , Arthritis, Rheumatoid*/drug therapy , Arthritis, Psoriatic*/drug therapy , Inflammatory Bowel Diseases*/drug therapy , Antirheumatic Agents*/adverse effects , Neoplasms*/chemically induced , Neoplasms*/epidemiology , Neoplasms*/drug therapy, Humans ; Randomized Controlled Trials as Topic ; Clinical Trials, Phase III as Topic
مستخلص: Janus kinase inhibitors (JAKi) have enormous appeal as immune-modulating therapies across many chronic inflammatory diseases, but recently this promise has been overshadowed by questions regarding associated cardiovascular and cancer risk emerging from the ORAL Surveillance phase 3b/4 post-marketing requirement randomized controlled trial. In that study of patients with rheumatoid arthritis with existing cardiovascular risk, tofacitinib, the first JAKi registered for chronic inflammatory disease, failed to meet non-inferiority thresholds when compared with tumor necrosis factor inhibitors for both incident major adverse cardiovascular events and incident cancer. While this result was unexpected by many, subsequently published observational data have also supported this finding. Notably, however, such a risk has largely not yet been demonstrated in patients outside the specific clinical situation examined in the trial, even in the face of many studies examining this. Nevertheless, this signal has practically re-aligned approaches to both tofacitinib and other JAKi to varying extents, in other patient populations and contexts: within rheumatoid arthritis, but also in psoriatic arthritis, axial spondyloarthritis, inflammatory bowel disease, atopic dermatitis, and beyond. Application to individual patients can be more challenging but remains important to harness the substantive potential of JAKi to the maximum extent safely possible. This review not only explores the evolution of the regulatory response to the signal, its informing data, biological plausibility, and its impact on guidelines, but also the many factors that clinicians must consider in navigating cardiovascular and cancer risk for their patients considering JAKi as immune-modulating therapy.
(© 2023. Crown.)
References: Nash P. JAK inhibitors: new indication and emerging safety data in 2022. Nat Rev Rheumatol. 2023;19:72–3. https://doi.org/10.1038/s41584-022-00891-4 . (PMID: 10.1038/s41584-022-00891-436536119)
Tanaka Y, Luo Y, O’Shea JJ, Nakayamada S. Janus kinase-targeting therapies in rheumatology: a mechanisms-based approach. Nat Rev Rheumatol. 2022;18:133–45. https://doi.org/10.1038/s41584-021-00726-8 . (PMID: 10.1038/s41584-021-00726-8349872018730299)
Burmester GR, Blanco R, Charles-Schoeman C, Wollenhaupt J, Zerbini C, Benda B, et al. Tofacitinib (CP-690,550) in combination with methotrexate in patients with active rheumatoid arthritis with an inadequate response to tumour necrosis factor inhibitors: a randomised phase 3 trial. Lancet. 2013;381:451–60. https://doi.org/10.1016/S0140-6736(12)61424-X . (PMID: 10.1016/S0140-6736(12)61424-X23294500)
Fleischmann R, Kremer J, Cush J, Schulze-Koops H, Connell CA, Bradley JD, et al. Placebo-controlled trial of tofacitinib monotherapy in rheumatoid arthritis. N Engl J Med. 2012;367:495–507. https://doi.org/10.1056/NEJMoa1109071 . (PMID: 10.1056/NEJMoa110907122873530)
van der Heijde D, Tanaka Y, Fleischmann R, Keystone E, Kremer J, Zerbini C, et al. Tofacitinib (CP-690,550) in patients with rheumatoid arthritis receiving methotrexate: twelve-month data from a twenty-four-month phase III randomized radiographic study. Arthritis Rheum. 2013;65:559–70. https://doi.org/10.1002/art.37816 . (PMID: 10.1002/art.3781623348607)
van Vollenhoven RF, Fleischmann R, Cohen S, Lee EB, García Meijide JA, Wagner S, et al. Tofacitinib or adalimumab versus placebo in rheumatoid arthritis. N Engl J Med. 2012;367:508–19. https://doi.org/10.1056/NEJMoa1112072 . (PMID: 10.1056/NEJMoa111207222873531)
Kremer J, Li Z-G, Hall S, Fleischmann R, Genovese M, Martin-Mola E, et al. Tofacitinib in combination with nonbiologic disease-modifying antirheumatic drugs in patients with active rheumatoid arthritis: a randomized trial. Ann Intern Med. 2013;159:253–61. https://doi.org/10.7326/0003-4819-159-4-201308200-00006 . (PMID: 10.7326/0003-4819-159-4-201308200-0000624026258)
US Food and Drug Administration. Xeljanz (tofacitinib) prescribing information. n.d.
European Medicines Agency. Refusal of the marketing authorisation for Xeljanz (tofacitinib). 2013. https://www.ema.europa.eu/en/documents/smop-initial/questions-answers-refusal-marketing-authorisationxeljanz_en.pdf . Accessed 21 Jul 2023.
Ytterberg SR, Bhatt DL, Mikuls TR, Koch GG, Fleischmann R, Rivas JL, et al. Cardiovascular and cancer risk with tofacitinib in rheumatoid arthritis. N Engl J Med. 2022;386:316–26. https://doi.org/10.1056/NEJMoa2109927 . (PMID: 10.1056/NEJMoa210992735081280)
Taylor PC, Weinblatt ME, Burmester GR, Rooney TP, Witt S, Walls CD, et al. Cardiovascular safety during treatment with baricitinib in rheumatoid arthritis. Arthritis Rheumatol. 2019;71:1042–55. https://doi.org/10.1002/art.40841 . (PMID: 10.1002/art.40841306638696618316)
European Medicines Agency. Restrictions in use of Xeljanz while EMA reviews risk of blood clots in lungs. 2019. https://www.ema.europa.eu/en/news/restrictions-use-xeljanz-while-ema-reviews-risk-blood-clots-lungs . Accessed 21 Jul 2023.
US Food and Drug Administration. FDA approves boxed warning about increased risk of blood clots and death with higher dose of arthritis and ulcerative colitis medicine tofacitinib (Xeljanz, Xeljanz XR). 2019. https://www.fda.gov/drugs/drug-safety-and-availability/fda-approves-boxed-warning-about-increased-risk-bloodclots-and-death-higher-dose-arthritis-and . Accessed 21 Jul 2023.
Pfizer. Pfizer Shares Co-Primary Endpoint Results from Post-Marketing Required Safety Study of XELJANZ® (tofacitinib) in subjects with rheumatoid arthritis (RA). 2021. https://www.pfizer.com/news/press-release/press-release-detail/pfizer-shares-co-primary-endpoint-results-post-marketing . Accessed 21 Jul 2023.
US Food and Drug Administration. Initial safety trial results find increased risk of serious heart-related problems and cancer with arthritis and ulcerative colitis medicine Xeljanz, Xeljanz XR (tofacitinib). 2021. https://www.fda.gov/drugs/fda-drug-safety-podcasts/initial-safety-trial-results-find-increased-risk-serious-heart-related-problems-and-cancer-arthritis . Accessed 21 Jul 2023.
US Food and Drug Administration. FDA requires warnings about increased risk of serious heart-related events, cancer, blood clots, and death for JAK inhibitors that treat certain chronic inflammatory conditions. 2021. https://www.fda.gov/drugs/drug-safety-and-availability/fda-requires-warnings-about-increased-risk-serious-heart-related-events-cancer-blood-clots-and-death . Accessed 21 Jul 2023.
American College of Rheumatology. Janus kinase inhibitor boxed warning. 2022. https://rheumatology.org/api/asset/bltd58974433694d161 . Accessed 21 Jul 2023.
European Medicines Agency. Cibinqo (abrocitinib), Jyseleca (filgotinib), Olumiant (baricitinib), Rinvoq (upadacitinib) and Xeljanz (tofacitinib) – Updated recommendations to minimise the risks of malignancy, major adverse cardiovascular events, serious infections, venous thromboembolism and mortality with use of Janus kinase inhibitors (JAKi). 2023. https://www.ema.europa.eu/en/medicines/dhpc/updated-recommendations-minimise-risks-malignancy-major-adverse-cardiovascular-events-serious . Accessed 21 Jul 2023.
JAK inhibitors: What your dermatologist wants you to know n.d. https://www.aad.org/public/diseases/a-z/jak-inhibitors . Accessed 26 Mar 2023.
Kristensen LE, Danese S, Yndestad A, Wang C, Nagy E, Modesto I, et al. Identification of two tofacitinib subpopulations with different relative risk versus TNF inhibitors: an analysis of the open label, randomised controlled study ORAL Surveillance. Ann Rheum Dis. 2023. https://doi.org/10.1136/ard-2022-223715 . (PMID: 10.1136/ard-2022-22371536931693)
Charles-Schoeman C, Buch MH, Dougados M, Bhatt DL, Giles JT, Ytterberg SR, et al. Risk of major adverse cardiovascular events with tofacitinib versus tumour necrosis factor inhibitors in patients with rheumatoid arthritis with or without a history of atherosclerotic cardiovascular disease: a post hoc analysis from ORAL Surveillance. Ann Rheum Dis. 2023;82:119–29. https://doi.org/10.1136/ard-2022-222259 . (PMID: 10.1136/ard-2022-22225936137735)
Curtis JR, Yamaoka K, Chen Y-H, Bhatt DL, Gunay LM, Sugiyama N, et al. Malignancy risk with tofacitinib versus TNF inhibitors in rheumatoid arthritis: results from the open-label, randomised controlled ORAL Surveillance trial. Ann Rheum Dis. 2023;82:331–43. https://doi.org/10.1136/ard-2022-222543 . (PMID: 10.1136/ard-2022-22254336600185)
Adas MA, Alveyn E, Cook E, Dey M, Galloway JB, Bechman K. The infection risks of JAK inhibition. Expert Rev Clin Immunol. 2022;18:253–61. https://doi.org/10.1080/1744666X.2022.2014323 . (PMID: 10.1080/1744666X.2022.201432334860621)
Burmester GR, Nash P, Sands BE, Papp K, Stockert L, Jones TV, et al. Adverse events of special interest in clinical trials of rheumatoid arthritis, psoriatic arthritis, ulcerative colitis and psoriasis with 37 066 patient-years of tofacitinib exposure. RMD Open. 2021. https://doi.org/10.1136/rmdopen-2021-001595 . (PMID: 10.1136/rmdopen-2021-001595343853648362717)
Dougados M, Charles-Schoeman C, Szekanecz Z, Giles JT, Ytterberg SR, Bhatt DL, et al. Impact of cardiovascular risk enrichment on incidence of major adverse cardiovascular events in the tofacitinib rheumatoid arthritis clinical programme. Ann Rheum Dis. 2023. https://doi.org/10.1136/ard-2022-223406 . (PMID: 10.1136/ard-2022-22340636720582)
Cohen SB, Tanaka Y, Mariette X, Curtis JR, Lee EB, Nash P, et al. Long-term safety of tofacitinib up to 9.5 years: a comprehensive integrated analysis of the rheumatoid arthritis clinical development programme. RMD Open. 2020. https://doi.org/10.1136/rmdopen-2020-001395 . (PMID: 10.1136/rmdopen-2020-001395331278567722371)
Charles-Schoeman C, Wicker P, Gonzalez-Gay MA, Boy M, Zuckerman A, Soma K, et al. Cardiovascular safety findings in patients with rheumatoid arthritis treated with tofacitinib, an oral Janus kinase inhibitor. Semin Arthritis Rheum. 2016;46:261–71. https://doi.org/10.1016/j.semarthrit.2016.05.014 . (PMID: 10.1016/j.semarthrit.2016.05.01427443588)
Curtis JR, Lee EB, Kaplan IV, Kwok K, Geier J, Benda B, et al. Tofacitinib, an oral Janus kinase inhibitor: analysis of malignancies across the rheumatoid arthritis clinical development programme. Ann Rheum Dis. 2016;75:831–41. https://doi.org/10.1136/annrheumdis-2014-205847 . (PMID: 10.1136/annrheumdis-2014-20584725902789)
Curtis JR, Lee EB, Martin G, Mariette X, Terry KK, Chen Y, et al. Analysis of non-melanoma skin cancer across the tofacitinib rheumatoid arthritis clinical programme. Clin Exp Rheumatol. 2017;35:614–22. (PMID: 28240592)
Charles-Schoeman C, DeMasi R, Valdez H, Soma K, Hwang L-J, Boy MG, et al. Risk factors for major adverse cardiovascular events in phase III and long-term extension studies of tofacitinib in patients with rheumatoid arthritis. Arthritis Rheumatol. 2019;71:1450–9. https://doi.org/10.1002/art.40911 . (PMID: 10.1002/art.40911313854416754249)
Burmester GR, Gordon KB, Rosenbaum JT, Arikan D, Lau WL, Li P, et al. Long-term safety of adalimumab in 29,967 adult patients from global clinical trials across multiple indications: an updated analysis. Adv Ther. 2020;37:364–80. https://doi.org/10.1007/s12325-019-01145-8 . (PMID: 10.1007/s12325-019-01145-831748904)
Khosrow-Khavar F, Kim SC, Lee H, Lee SB, Desai RJ. Tofacitinib and risk of cardiovascular outcomes: results from the Safety of TofAcitinib in Routine care patients with Rheumatoid Arthritis (STAR-RA) study. Ann Rheum Dis. 2022;81:798–804. https://doi.org/10.1136/annrheumdis-2021-221915 . (PMID: 10.1136/annrheumdis-2021-22191535027405)
Khosrow-Khavar F, Desai RJ, Lee H, Lee SB, Kim SC. Tofacitinib and risk of malignancy: results from the safety of tofacitinib in routine care patients with rheumatoid arthritis (STAR-RA) study. Arthritis Rheumatol. 2022;74:1648–59. https://doi.org/10.1002/art.42250 . (PMID: 10.1002/art.42250356439569529806)
Kremer JM, Bingham CO 3rd, Cappelli LC, Greenberg JD, Madsen AM, Geier J, et al. Postapproval comparative safety study of tofacitinib and biological disease-modifying antirheumatic drugs: 5-year results from a United States-based rheumatoid arthritis registry. ACR Open Rheumatol. 2021;3:173–84. https://doi.org/10.1002/acr2.11232 . (PMID: 10.1002/acr2.11232335702607966883)
Hoisnard L, Pina Vegas L, Dray-Spira R, Weill A, Zureik M, Sbidian E. Risk of major adverse cardiovascular and venous thromboembolism events in patients with rheumatoid arthritis exposed to JAK inhibitors versus adalimumab: a nationwide cohort study. Ann Rheum Dis. 2023;82:182–8. https://doi.org/10.1136/ard-2022-222824 . (PMID: 10.1136/ard-2022-22282436198438)
Gottenberg J-E, Chaudier A, Allenbach Y, Mekinian A, Amoura Z, Cacoub P, et al. Tolerance and efficacy of targeted therapies prescribed for off-label indications in refractory systemic autoimmune diseases: data of the first 100 patients enrolled in the TATA registry (TArgeted Therapy in Autoimmune Diseases). RMD Open. 2022. https://doi.org/10.1136/rmdopen-2022-002324 . (PMID: 10.1136/rmdopen-2022-002324363190669628685)
Huss V, Bower H, Hellgren K, Frisell T, Askling J, Behalf of the ARTIS Group, et al. Cancer risks with JAKi and biological disease-modifying antirheumatic drugs in patients with rheumatoid arthritis or psoriatic arthritis: a national real-world cohort study. Ann Rheum Dis. 2023. https://doi.org/10.1136/ard-2022-223636 . (PMID: 10.1136/ard-2022-22363636868796)
Mueller RB, Hasler C, Popp F, Mattow F, Durmisi M, Souza A, et al. Effectiveness, tolerability, and safety of tofacitinib in rheumatoid arthritis: a retrospective analysis of real-world data from the St Gallen and Aarau cohorts. J Clin Med Res. 2019. https://doi.org/10.3390/jcm8101548 . (PMID: 10.3390/jcm8101548)
Bilgin E, Duran E, Ünaldı E, Kalyoncu U, Kiraz S, Ertenli İ. Comparison of cardiovascular, cancer and herpes zoster risk of tofacitinib versus etanercept: single-centre observational study. Rheumatology. 2022;61:e267–9. https://doi.org/10.1093/rheumatology/keac226 . (PMID: 10.1093/rheumatology/keac22635394013)
Hirose W, Harigai M, Amano K, Hidaka T, Itoh K, Aoki K, et al. Real-world effectiveness and safety of tofacitinib and abatacept in patients with rheumatoid arthritis. Rheumatol Adv Pract. 2022;6:rkac090. https://doi.org/10.1093/rap/rkac090 . (PMID: 10.1093/rap/rkac090364078019667967)
Iwamoto N, Sato S, Kurushima S, Michitsuji T, Nishihata S, Okamoto M, et al. Real-world comparative effectiveness and safety of tofacitinib and baricitinib in patients with rheumatoid arthritis. Arthritis Res Ther. 2021;23:197. https://doi.org/10.1186/s13075-021-02582-z . (PMID: 10.1186/s13075-021-02582-z343013118299678)
Fang Y-F, Liu J-R, Chang S-H, Kuo C-F, See L-C. Comparative safety of Janus kinase inhibitors and tumor necrosis factor inhibitors in patients undergoing treatment for rheumatoid arthritis. Int J Rheum Dis. 2022;25:1254–62. https://doi.org/10.1111/1756-185X.14414 . (PMID: 10.1111/1756-185X.1441435923107)
Sandborn WJ, D’Haens GR, Sands BE, Panaccione R, Ng SC, Lawendy N, et al. Tofacitinib for the treatment of ulcerative colitis: an integrated summary of up to 7.8 years of safety data from the global clinical program. J Crohns Colitis. 2022. https://doi.org/10.1093/ecco-jcc/jjac141 . (PMID: 10.1093/ecco-jcc/jjac1413523996810069618)
Cohen SB. JAK inhibitors and VTE risk: how concerned should we be? Nat Rev Rheumatol. 2021;17:133–4. https://doi.org/10.1038/s41584-021-00575-5 . (PMID: 10.1038/s41584-021-00575-533452499)
Lee JJ, Pope JE. A meta-analysis of the risk of venous thromboembolism in inflammatory rheumatic diseases. Arthritis Res Ther. 2014;16:435. https://doi.org/10.1186/s13075-014-0435-y . (PMID: 10.1186/s13075-014-0435-y252533024207310)
Holmqvist ME, Neovius M, Eriksson J, Mantel Ä, Wållberg-Jonsson S, Jacobsson LTH, et al. Risk of venous thromboembolism in patients with rheumatoid arthritis and association with disease duration and hospitalization. JAMA. 2012;308:1350–6. https://doi.org/10.1001/2012.jama.11741 . (PMID: 10.1001/2012.jama.1174123032551)
Kim SC, Schneeweiss S, Liu J, Solomon DH. Risk of venous thromboembolism in patients with rheumatoid arthritis. Arthritis Care Res. 2013;65:1600–7. https://doi.org/10.1002/acr.22039 . (PMID: 10.1002/acr.22039)
Lichtenstein GR, Bressler B, Francisconi C, Vermeire S, Lawendy N, Salese L, et al. Assessment of safety and efficacy of tofacitinib, stratified by age, in patients from the ulcerative colitis clinical program. Inflamm Bowel Dis. 2023;29:27–41. https://doi.org/10.1093/ibd/izac084 . (PMID: 10.1093/ibd/izac08436342120)
Center for Drug Evaluation, Research. FDA requires warnings about increased risk of serious heart-related events, cancer, blood clots, and death for JAK inhibitors that treat certain chronic inflammatory conditions. US Food and Drug Administration n.d. https://www.fda.gov/drugs/drug-safety-and-availability/fda-requires-warnings-about-increased-risk-serious-heart-related-events-cancer-blood-clots-and-death . accessed 23 Feb 2023.
Choy EH. Clinical significance of Janus kinase inhibitor selectivity. Rheumatology. 2019;58:953–62. https://doi.org/10.1093/rheumatology/key339 . (PMID: 10.1093/rheumatology/key33930508136)
Mortezavi M, Martin DA, Schulze-Koops H. After 25 years of drug development, do we know JAK? RMD Open. 2022. https://doi.org/10.1136/rmdopen-2022-002409 . (PMID: 10.1136/rmdopen-2022-002409358310349280879)
Taylor PC, Takeuchi T, Burmester GR, Durez P, Smolen JS, Deberdt W, et al. Safety of baricitinib for the treatment of rheumatoid arthritis over a median of 4.6 and up to 9.3 years of treatment: final results from long-term extension study and integrated database. Ann Rheum Dis. 2022;81:335–43. https://doi.org/10.1136/annrheumdis-2021-221276 . (PMID: 10.1136/annrheumdis-2021-22127634706874)
Salinas CA, Louder A, Polinski J, Zhang TC, Bower H, Phillips S, et al. Evaluation of VTE, MACE, and serious infections among patients with RA treated with baricitinib compared to TNFi: a multi-database study of patients in routine care using disease registries and claims databases. Rheumatol Ther. 2023;10:201–23. https://doi.org/10.1007/s40744-022-00505-1 . (PMID: 10.1007/s40744-022-00505-136371760)
Tanaka Y, Ishii T, Cai Z, Schlichting D, Rooney T, Macias W. Efficacy and safety of baricitinib in Japanese patients with active rheumatoid arthritis: a 52-week, randomized, single-blind, extension study. Mod Rheumatol. 2018;28:20–9. https://doi.org/10.1080/14397595.2017.1307899 . (PMID: 10.1080/14397595.2017.130789928440680)
Takagi M, Atsumi T, Matsuno H, Tamura N, Fujii T, Okamoto N, et al. Safety and effectiveness of baricitinib for rheumatoid arthritis in Japanese clinical practice: 24-week results of all-case post-marketing surveillance. Mod Rheumatol. 2022. https://doi.org/10.1093/mr/roac089 . (PMID: 10.1093/mr/roac08934755187)
Fitton J, Melville AR, Emery P, Nam JL, Buch MH. Real-world single centre use of JAK inhibitors across the rheumatoid arthritis pathway. Rheumatology. 2021;60:4048–54. https://doi.org/10.1093/rheumatology/keaa858 . (PMID: 10.1093/rheumatology/keaa85833331938)
Zeng X, Zhao D, Radominski SC, Keiserman M, Lee CK, Meerwein S, et al. Upadacitinib in patients from China, Brazil, and South Korea with rheumatoid arthritis and an inadequate response to conventional therapy. Int J Rheum Dis. 2021;24:1530–9. https://doi.org/10.1111/1756-185X.14235 . (PMID: 10.1111/1756-185X.14235347795769299142)
Cohen SB, van Vollenhoven RF, Winthrop KL, Zerbini CAF, Tanaka Y, Bessette L, et al. Safety profile of upadacitinib in rheumatoid arthritis: integrated analysis from the SELECT phase III clinical programme. Ann Rheum Dis. 2021;80:304–11. https://doi.org/10.1136/annrheumdis-2020-218510 . (PMID: 10.1136/annrheumdis-2020-21851033115760)
Burmester GR, Winthrop K, Blanco R, Nash P, Goupille P, Azevedo VF, et al. Safety profile of upadacitinib up to 3 years in psoriatic arthritis: an integrated analysis of two pivotal phase 3 trials. Rheumatol Ther. 2022;9:521–39. https://doi.org/10.1007/s40744-021-00410-z . (PMID: 10.1007/s40744-021-00410-z34970731)
Katoh N, Ohya Y, Murota H, Ikeda M, Hu X, Ikeda K, et al. Safety and efficacy of upadacitinib for atopic dermatitis in Japan: 2-year interim results from the phase 3 Rising Up Study. Dermatol Ther. 2023;13:221–34. https://doi.org/10.1007/s13555-022-00842-7 . (PMID: 10.1007/s13555-022-00842-7)
Danese S, Vermeire S, Zhou W, Pangan AL, Siffledeen J, Greenbloom S, et al. Upadacitinib as induction and maintenance therapy for moderately to severely active ulcerative colitis: results from three phase 3, multicentre, double-blind, randomised trials. Lancet. 2022;399:2113–28. https://doi.org/10.1016/S0140-6736(22)00581-5 . (PMID: 10.1016/S0140-6736(22)00581-535644166)
Winthrop KL, Tanaka Y, Takeuchi T, Kivitz A, Matzkies F, Genovese MC, et al. Integrated safety analysis of filgotinib in patients with moderately to severely active rheumatoid arthritis receiving treatment over a median of 1.6 years. Ann Rheum Dis. 2022;81:184–92. https://doi.org/10.1136/annrheumdis-2021-221051 . (PMID: 10.1136/annrheumdis-2021-22105134740884)
Feagan Senior Scientific Officer BG, Matsuoka K, Rogler G, Faes M, Oortwijn A, de Haas A, et al. P491 efficacy and safety outcomes of long-term treatment with filgotinib 200 mg among patients with Ulcerative Colitis: an interim analysis of SELECTIONLTE. J Crohns Colitis. 2022;16:i456–7. https://doi.org/10.1093/ecco-jcc/jjab232.618 . (PMID: 10.1093/ecco-jcc/jjab232.618)
Garrido-Trigo A, Salas A. Molecular structure and function of Janus kinases: implications for the development of inhibitors. J Crohns Colitis. 2020;14:S713–24. https://doi.org/10.1093/ecco-jcc/jjz206 . (PMID: 10.1093/ecco-jcc/jjz20632083640)
European Medicines Agency. Xeljanz Product Information. 2017. https://www.ema.europa.eu/en/medicines/human/EPAR/xeljanz . Accessed 21 Jul 2023.
Molander V, Bower H, Frisell T, Askling J. Risk of venous thromboembolism in rheumatoid arthritis, and its association with disease activity: a nationwide cohort study from Sweden. Ann Rheum Dis. 2021;80:169–75. https://doi.org/10.1136/annrheumdis-2020-218419 . (PMID: 10.1136/annrheumdis-2020-21841933032998)
Martinod K, Deppermann C. Immunothrombosis and thromboinflammation in host defense and disease. Platelets. 2021;32:314–24. https://doi.org/10.1080/09537104.2020.1817360 . (PMID: 10.1080/09537104.2020.181736032896192)
Gaertner F, Massberg S. Blood coagulation in immunothrombosis—at the frontline of intravascular immunity. Semin Immunol. 2016;28:561–9. https://doi.org/10.1016/j.smim.2016.10.010 . (PMID: 10.1016/j.smim.2016.10.01027866916)
Mosevoll KA, Johansen S, Wendelbo Ø, Nepstad I, Bruserud Ø, Reikvam H. Cytokines, adhesion molecules, and matrix metalloproteases as predisposing, diagnostic, and prognostic factors in venous thrombosis. Front Med. 2018;5:147. https://doi.org/10.3389/fmed.2018.00147 . https://www.ema.europa.eu/en/news/ema-confirms-measures-minimise-risk-serious-side-effects-janus-kinase-inhibitors-chronic. (PMID: 10.3389/fmed.2018.00147)
Kotyla PJ, Engelmann M, Giemza-Stokłosa J, Wnuk B, Islam MA. Thromboembolic adverse drug reactions in Janus kinase (JAK) inhibitors: does the inhibitor specificity play a role? Int J Mol Sci. 2021. https://doi.org/10.3390/ijms22052449 . (PMID: 10.3390/ijms22052449336710497957632)
Pecquet C, Diaconu CC, Staerk J, Girardot M, Marty C, Royer Y, et al. Thrombopoietin receptor down-modulation by JAK2 V617F: restoration of receptor levels by inhibitors of pathologic JAK2 signaling and of proteasomes. Blood. 2012;119:4625–35. https://doi.org/10.1182/blood-2011-08-372524 . (PMID: 10.1182/blood-2011-08-37252422378845)
Kralovics R, Passamonti F, Buser AS, Teo S-S, Tiedt R, Passweg JR, et al. A gain-of-function mutation of JAK2 in myeloproliferative disorders. N Engl J Med. 2005;352:1779–90. https://doi.org/10.1056/NEJMoa051113 . (PMID: 10.1056/NEJMoa05111315858187)
Mead AJ, Rugless MJ, Jacobsen SEW, Schuh A. Germline JAK2 mutation in a family with hereditary thrombocytosis. N Engl J Med. 2012;366:967–9. https://doi.org/10.1056/NEJMc1200349 . (PMID: 10.1056/NEJMc120034922397670)
Samuelson BT, Vesely SK, Chai-Adisaksopha C, Scott BL, Crowther M, Garcia D. The impact of ruxolitinib on thrombosis in patients with polycythemia vera and myelofibrosis: a meta-analysis. Blood Coagul Fibrinolysis. 2016;27:648–52. https://doi.org/10.1097/MBC.0000000000000446 . (PMID: 10.1097/MBC.000000000000044626569516)
Kremer J, Huizinga TWJ, Chen L, Saifan CG, Issa M, Witt SL, et al. FRI0090 Analysis of neutrophils, lymphocytes, and platelets in pooled phase 2 and phase 3 studies of baricitinib for rheumatoid arthritis. In: Poster presentations, BMJ Publishing Group Ltd and European League Against Rheumatism; 2017. https://doi.org/10.1136/annrheumdis-2017-eular.1325 .
Rajasimhan S, Pamuk O, Katz JD. Safety of Janus kinase inhibitors in older patients: a focus on the thromboembolic risk. Drugs Aging. 2020;37:551–8. https://doi.org/10.1007/s40266-020-00775-w . (PMID: 10.1007/s40266-020-00775-w325148747387323)
Weitz JI, Szekanecz Z, Charles-Schoeman C, Vranic I, Sahin B, Paciga SA, et al. Biomarkers to predict risk of venous thromboembolism in patients with rheumatoid arthritis receiving tofacitinib or tumour necrosis factor inhibitors. RMD Open. 2022. https://doi.org/10.1136/rmdopen-2022-002571 . (PMID: 10.1136/rmdopen-2022-002571363234909639150)
Haysen S, Nielsen ALL, Qvist P, Kragstrup TW. POS0038 genomics of JAK–STAT signaling in venous thromboembolism. Ann Rheum Dis. 2022;81:234–234. https://doi.org/10.1136/annrheumdis-2022-eular.2593 . (PMID: 10.1136/annrheumdis-2022-eular.2593)
West MT, Kartika T, Paquin AR, Liederbauer E, Zheng TJ, Lane L, et al. Thrombotic events in patients using cyclin dependent kinase 4/6 inhibitors, analysis of existing ambulatory risk assessment models and the potential influences of tumor specific risk factors. Curr Probl Cancer. 2022;46:100832. https://doi.org/10.1016/j.currproblcancer.2021.100832 . (PMID: 10.1016/j.currproblcancer.2021.100832350347669009191)
West MT, Smith CE, Kaempf A, Kohs TCL, Amirsoltani R, Ribkoff J, et al. CDK 4/6 inhibitors are associated with a high incidence of thrombotic events in women with breast cancer in real-world practice. Eur J Haematol. 2021;106:634–42. https://doi.org/10.1111/ejh.13590 . (PMID: 10.1111/ejh.13590335274798087188)
Łukasik P, Załuski M, Gutowska I. Cyclin-dependent kinases (CDK) and their role in diseases development—review. Int J Mol Sci. 2021. https://doi.org/10.3390/ijms22062935 . (PMID: 10.3390/ijms22062935338058007998717)
Solomon DH, Reed GW, Kremer JM, Curtis JR, Farkouh ME, Harrold LR, et al. Disease activity in rheumatoid arthritis and the risk of cardiovascular events. Arthritis Rheumatol. 2015;67:1449–55. https://doi.org/10.1002/art.39098 . (PMID: 10.1002/art.39098257761124446181)
Kishore R, Verma SK. Roles of STATs signaling in cardiovascular diseases. JAKSTAT. 2012;1:118–24. https://doi.org/10.4161/jkst.20115 . (PMID: 10.4161/jkst.20115240587603670291)
Krishnamurthy P, Rajasingh J, Lambers E, Qin G, Losordo DW, Kishore R. IL-10 inhibits inflammation and attenuates left ventricular remodeling after myocardial infarction via activation of STAT3 and suppression of HuR. Circ Res. 2009;104:e9-18. https://doi.org/10.1161/CIRCRESAHA.108.188243 . (PMID: 10.1161/CIRCRESAHA.108.18824319096025)
Bolli R, Stein AB, Guo Y, Wang O-L, Rokosh G, Dawn B, et al. A murine model of inducible, cardiac-specific deletion of STAT3: its use to determine the role of STAT3 in the upregulation of cardioprotective proteins by ischemic preconditioning. J Mol Cell Cardiol. 2011;50:589–97. https://doi.org/10.1016/j.yjmcc.2011.01.002 . (PMID: 10.1016/j.yjmcc.2011.01.00221223971)
Szczepanek K, Chen Q, Derecka M, Salloum FN, Zhang Q, Szelag M, et al. Mitochondrial-targeted signal transducer and activator of transcription 3 (STAT3) protects against ischemia-induced changes in the electron transport chain and the generation of reactive oxygen species. J Biol Chem. 2011;286:29610–20. https://doi.org/10.1074/jbc.M111.226209 . (PMID: 10.1074/jbc.M111.226209217153233191002)
Li N, Gou Z-P, Du S-Q, Zhu X-H, Lin H, Liang X-F, et al. Effect of JAK inhibitors on high- and low-density lipoprotein in patients with rheumatoid arthritis: a systematic review and network meta-analysis. Clin Rheumatol. 2022;41:677–88. https://doi.org/10.1007/s10067-021-06003-z . (PMID: 10.1007/s10067-021-06003-z34993729)
Wollenhaupt J, Silverfield J, Lee EB, Curtis JR, Wood SP, Soma K, et al. Safety and efficacy of tofacitinib, an oral janus kinase inhibitor, for the treatment of rheumatoid arthritis in open-label, longterm extension studies. J Rheumatol. 2014;41:837–52. https://doi.org/10.3899/jrheum.130683 . (PMID: 10.3899/jrheum.13068324692527)
Wolk R, Armstrong EJ, Hansen PR, Thiers B, Lan S, Tallman AM, et al. Effect of tofacitinib on lipid levels and lipid-related parameters in patients with moderate to severe psoriasis. J Clin Lipidol. 2017;11:1243–56. https://doi.org/10.1016/j.jacl.2017.06.012 . (PMID: 10.1016/j.jacl.2017.06.01228751001)
Souto A, Salgado E, Maneiro JR, Mera A, Carmona L, Gómez-Reino JJ. Lipid profile changes in patients with chronic inflammatory arthritis treated with biologic agents and tofacitinib in randomized clinical trials: a systematic review and meta-analysis. Arthritis Rheumatol. 2015;67:117–27. https://doi.org/10.1002/art.38894 . (PMID: 10.1002/art.3889425303044)
Kremer JM, Genovese MC, Keystone E, Taylor PC, Zuckerman SH, Ruotolo G, et al. Effects of baricitinib on lipid, apolipoprotein, and lipoprotein particle profiles in a phase IIb study of patients with active rheumatoid arthritis. Arthritis Rheumatol. 2017;69:943–52. https://doi.org/10.1002/art.40036 . (PMID: 10.1002/art.4003628029752)
Smolen JS, Genovese MC, Takeuchi T, Hyslop DL, Macias WL, Rooney T, et al. Safety Profile of baricitinib in patients with active rheumatoid arthritis with over 2 years median time in treatment. J Rheumatol. 2019;46:7–18. https://doi.org/10.3899/jrheum.171361 . (PMID: 10.3899/jrheum.17136130219772)
Smolen JS, Pangan AL, Emery P, Rigby W, Tanaka Y, Vargas JI, et al. Upadacitinib as monotherapy in patients with active rheumatoid arthritis and inadequate response to methotrexate (SELECT-MONOTHERAPY): a randomised, placebo-controlled, double-blind phase 3 study. Lancet. 2019;393:2303–11. https://doi.org/10.1016/S0140-6736(19)30419-2 . (PMID: 10.1016/S0140-6736(19)30419-231130260)
Pérez-Baos S, Barrasa JI, Gratal P, Larrañaga-Vera A, Prieto-Potin I, Herrero-Beaumont G, et al. Tofacitinib restores the inhibition of reverse cholesterol transport induced by inflammation: understanding the lipid paradox associated with rheumatoid arthritis. Br J Pharmacol. 2017;174:3018–31. https://doi.org/10.1111/bph.13932 . (PMID: 10.1111/bph.13932286465165573422)
Meune C, Touzé E, Trinquart L, Allanore Y. Trends in cardiovascular mortality in patients with rheumatoid arthritis over 50 years: a systematic review and meta-analysis of cohort studies. Rheumatology. 2009;48:1309–13. https://doi.org/10.1093/rheumatology/kep252 . (PMID: 10.1093/rheumatology/kep25219696061)
Kume K, Amano K, Yamada S, Kanazawa T, Ohta H, Hatta K, et al. Tofacitinib improves atherosclerosis despite up-regulating serum cholesterol in patients with active rheumatoid arthritis: a cohort study. Rheumatol Int. 2017;37:2079–85. https://doi.org/10.1007/s00296-017-3844-9 . (PMID: 10.1007/s00296-017-3844-929030660)
Hamar A, Hascsi Z, Pusztai A, Czókolyová M, Végh E, Pethő Z, et al. Prospective, simultaneous assessment of joint and vascular inflammation by PET/CT in tofacitinib-treated patients with rheumatoid arthritis: associations with vascular and bone status. RMD Open. 2021. https://doi.org/10.1136/rmdopen-2021-001804 . (PMID: 10.1136/rmdopen-2021-001804347409808573670)
Soós B, Hamar A, Pusztai A, Czókolyová M, Végh E, Szamosi S, et al. Effects of tofacitinib therapy on arginine and methionine metabolites in association with vascular pathophysiology in rheumatoid arthritis: a metabolomic approach. Front Med. 2022;9:1011734. https://doi.org/10.3389/fmed.2022.1011734 . (PMID: 10.3389/fmed.2022.1011734)
Strangfeld A, Hierse F, Rau R, Burmester G-R, Krummel-Lorenz B, Demary W, et al. Risk of incident or recurrent malignancies among patients with rheumatoid arthritis exposed to biologic therapy in the German biologics register RABBIT. Arthritis Res Ther. 2010;12:R5. https://doi.org/10.1186/ar2904 . (PMID: 10.1186/ar2904200642072875631)
Senkevitch E, Durum S. The promise of Janus kinase inhibitors in the treatment of hematological malignancies. Cytokine. 2017;98:33–41. https://doi.org/10.1016/j.cyto.2016.10.012 . (PMID: 10.1016/j.cyto.2016.10.01228277287)
Qureshy Z, Johnson DE, Grandis JR. Targeting the JAK/STAT pathway in solid tumors. J Cancer Metastasis Treat. 2020. https://doi.org/10.20517/2394-4722.2020.58 . (PMID: 10.20517/2394-4722.2020.58335213217845926)
Meudec L, Richebé P, Pascaud J, Mariette X, Nocturne G. Janus kinase inhibitors alter NK cells phenotype and inhibit their antitumor capacity. Rheumatology. 2022. https://doi.org/10.1093/rheumatology/keac710 . (PMID: 10.1093/rheumatology/keac710)
Gotthardt D, Putz EM, Grundschober E, Prchal-Murphy M, Straka E, Kudweis P, et al. STAT5 is a key regulator in NK cells and acts as a molecular switch from tumor surveillance to tumor promotion. Cancer Discov. 2016;6:414–29. https://doi.org/10.1158/2159-8290.CD-15-0732 . (PMID: 10.1158/2159-8290.CD-15-073226873347)
Nocturne G, Pascaud J, Ly B, Tahmasebi F, Mariette X. JAK inhibitors alter NK cell functions and may impair immunosurveillance against lymphomagenesis. Cell Mol Immunol. 2020;17:552–3. https://doi.org/10.1038/s41423-019-0320-3 . (PMID: 10.1038/s41423-019-0320-331664224)
Traves PG, Murray B, Campigotto F, Galien R, Meng A, Di Paolo JA. JAK selectivity and the implications for clinical inhibition of pharmacodynamic cytokine signalling by filgotinib, upadacitinib, tofacitinib and baricitinib. Ann Rheum Dis. 2021;80:865–75. https://doi.org/10.1136/annrheumdis-2020-219012 . (PMID: 10.1136/annrheumdis-2020-21901233741556)
Weinhold KJ, Bukowski JF, Brennan TV, Noveck RJ, Staats JS, Lin L, et al. Reversibility of peripheral blood leukocyte phenotypic and functional changes after exposure to and withdrawal from tofacitinib, a Janus kinase inhibitor, in healthy volunteers. Clin Immunol. 2018;191:10–20. https://doi.org/10.1016/j.clim.2018.03.002 . (PMID: 10.1016/j.clim.2018.03.002295185776036921)
Agca R, Smulders Y, Nurmohamed M. Cardiovascular disease risk in immune-mediated inflammatory diseases: recommendations for clinical practice. Heart. 2022;108:73–9. https://doi.org/10.1136/heartjnl-2019-316378 . (PMID: 10.1136/heartjnl-2019-31637833674356)
Bengtsson K, Forsblad-d’Elia H, Lie E, Klingberg E, Dehlin M, Exarchou S, et al. Are ankylosing spondylitis, psoriatic arthritis and undifferentiated spondyloarthritis associated with an increased risk of cardiovascular events? A prospective nationwide population-based cohort study. Arthritis Res Ther. 2017;19:102. https://doi.org/10.1186/s13075-017-1315-z . (PMID: 10.1186/s13075-017-1315-z285218245437558)
Avina-Zubieta JA, Thomas J, Sadatsafavi M, Lehman AJ, Lacaille D. Risk of incident cardiovascular events in patients with rheumatoid arthritis: a meta-analysis of observational studies. Ann Rheum Dis. 2012;71:1524–9. https://doi.org/10.1136/annrheumdis-2011-200726 . (PMID: 10.1136/annrheumdis-2011-20072622425941)
Solomon DH, Karlson EW, Rimm EB, Cannuscio CC, Mandl LA, Manson JE, et al. Cardiovascular morbidity and mortality in women diagnosed with rheumatoid arthritis. Circulation. 2003;107:1303–7. https://doi.org/10.1161/01.cir.0000054612.26458.b2 . (PMID: 10.1161/01.cir.0000054612.26458.b212628952)
Skeoch S, Bruce IN. Atherosclerosis in rheumatoid arthritis: is it all about inflammation? Nat Rev Rheumatol. 2015;11:390–400. https://doi.org/10.1038/nrrheum.2015.40 . (PMID: 10.1038/nrrheum.2015.4025825281)
Agca R, Heslinga SC, Rollefstad S, Heslinga M, McInnes IB, Peters MJL, et al. EULAR recommendations for cardiovascular disease risk management in patients with rheumatoid arthritis and other forms of inflammatory joint disorders: 2015/2016 update. Ann Rheum Dis. 2017;76:17–28. https://doi.org/10.1136/annrheumdis-2016-209775 . (PMID: 10.1136/annrheumdis-2016-20977527697765)
Lindhardsen J, Ahlehoff O, Gislason GH, Madsen OR, Olesen JB, Torp-Pedersen C, et al. The risk of myocardial infarction in rheumatoid arthritis and diabetes mellitus: a Danish nationwide cohort study. Ann Rheum Dis. 2011;70:929–34. https://doi.org/10.1136/ard.2010.143396 . (PMID: 10.1136/ard.2010.14339621389043)
Coumbe AG, Pritzker MR, Duprez DA. Cardiovascular risk and psoriasis: beyond the traditional risk factors. Am J Med. 2014;127:12–8. https://doi.org/10.1016/j.amjmed.2013.08.013 . (PMID: 10.1016/j.amjmed.2013.08.01324161194)
Dowlatshahi EA, Kavousi M, Nijsten T, Arfan Ikram M, Hofman A, Franco OH, et al. Psoriasis is not associated with atherosclerosis and incident cardiovascular events: the Rotterdam study. J Investig Dermatol. 2013;133:2347–54. https://doi.org/10.1038/jid.2013.131 . (PMID: 10.1038/jid.2013.13123492918)
Conrad N, McInnes IB, Mcmurray JJV, Sattar N. Patients with a range of rheumatic diseases are at increased risk of cardiovascular disorders towards a re-evaluation of the European League against Rheumatism (EULAR)’s recommendations for cardiovascular risk management? Ann Rheum Dis. 2023;82:457–9. https://doi.org/10.1136/ard-2022-223315 . (PMID: 10.1136/ard-2022-22331536442979)
Feng W, Chen G, Cai D, Zhao S, Cheng J, Shen H. Inflammatory bowel disease and risk of ischemic heart disease: an updated meta-analysis of cohort studies. J Am Heart Assoc. 2017. https://doi.org/10.1161/JAHA.117.005892 . (PMID: 10.1161/JAHA.117.005892292035805779018)
Lee H, Kim YC, Choi JW. Alopecia areata is not a risk factor for heart diseases: a 10-year retrospective cohort study. PLoS ONE. 2021;16:e0250216. https://doi.org/10.1371/journal.pone.0250216 . (PMID: 10.1371/journal.pone.0250216339616638104430)
Huang KP, Joyce CJ, Topaz M, Guo Y, Mostaghimi A. Cardiovascular risk in patients with alopecia areata (AA): a propensity-matched retrospective analysis. J Am Acad Dermatol. 2016;75:151–4. https://doi.org/10.1016/j.jaad.2016.02.1234 . (PMID: 10.1016/j.jaad.2016.02.123427183846)
Horta-Baas G, Romero-Figueroa MDS, Montiel-Jarquín AJ, Pizano-Zárate ML, García-Mena J, Ramírez-Durán N. Intestinal dysbiosis and rheumatoid arthritis: a link between gut microbiota and the pathogenesis of rheumatoid arthritis. J Immunol Res. 2017;2017:4835189. https://doi.org/10.1155/2017/4835189 . (PMID: 10.1155/2017/4835189289481745602494)
Bigeh A, Sanchez A, Maestas C, Gulati M. Inflammatory bowel disease and the risk for cardiovascular disease: does all inflammation lead to heart disease? Trends Cardiovasc Med. 2020;30:463–9. https://doi.org/10.1016/j.tcm.2019.10.001 . (PMID: 10.1016/j.tcm.2019.10.00131653485)
Ahmadmehrabi S, Tang WHW. Gut microbiome and its role in cardiovascular diseases. Curr Opin Cardiol. 2017;32:761–6. https://doi.org/10.1097/HCO.0000000000000445 . (PMID: 10.1097/HCO.0000000000000445290232885746314)
Simon TA, Thompson A, Gandhi KK, Hochberg MC, Suissa S. Incidence of malignancy in adult patients with rheumatoid arthritis: a meta-analysis. Arthritis Res Ther. 2015;17:212. https://doi.org/10.1186/s13075-015-0728-9 . (PMID: 10.1186/s13075-015-0728-9262716204536786)
Baecklund E, Iliadou A, Askling J, Ekbom A, Backlin C, Granath F, et al. Association of chronic inflammation, not its treatment, with increased lymphoma risk in rheumatoid arthritis. Arthritis Rheum. 2006;54:692–701. https://doi.org/10.1002/art.21675 . (PMID: 10.1002/art.2167516508929)
Karmacharya P, Shahukhal R, Ogdie A. Risk of malignancy in spondyloarthritis: a systematic review. Rheum Dis Clin North Am. 2020;46:463–511. https://doi.org/10.1016/j.rdc.2020.04.001 . (PMID: 10.1016/j.rdc.2020.04.00132631600)
Luo X, Deng C, Fei Y, Zhang W, Li Y, Zhang X, et al. Malignancy development risk in psoriatic arthritis patients undergoing treatment: a systematic review and meta-analysis. Semin Arthritis Rheum. 2019;48:626–31. https://doi.org/10.1016/j.semarthrit.2018.05.009 . (PMID: 10.1016/j.semarthrit.2018.05.00929929736)
Chan T-M, Luo S-F, Yu K-H, See L-C, Huang L-H, Kuo C-F. Risk of cancer in patients with ankylosing spondylitis: a nationwide cohort study in Taiwan. Scand J Rheumatol. 2021;50:132–8. https://doi.org/10.1080/03009742.2020.1804612 . (PMID: 10.1080/03009742.2020.180461233464145)
Chang C-C, Chang C-W, Nguyen P-AA, Chang T-H, Shih Y-L, Chang W-Y, et al. Ankylosing spondylitis and the risk of cancer. Oncol Lett. 2017;14:1315–22. https://doi.org/10.3892/ol.2017.6368 . (PMID: 10.3892/ol.2017.6368287893465529950)
Bittar M, Merjanah S, Alkilany R, Magrey M. Malignancy in ankylosing spondylitis: a cross-sectional analysis of a large population database. BMC Rheumatol. 2022;6:44. https://doi.org/10.1186/s41927-022-00275-x . (PMID: 10.1186/s41927-022-00275-x357688809245256)
Deng C, Li W, Fei Y, Li Y, Zhang F. Risk of malignancy in ankylosing spondylitis: a systematic review and meta-analysis. Sci Rep. 2016;6:32063. https://doi.org/10.1038/srep32063 . (PMID: 10.1038/srep32063275348104989281)
Laredo V, García-Mateo S, Martínez-Domínguez SJ, López de la Cruz J, Gargallo-Puyuelo CJ, Gomollón F. Risk of cancer in patients with inflammatory bowel diseases and keys for patient management. Cancers. 2023. https://doi.org/10.3390/cancers15030871 . (PMID: 10.3390/cancers150308713744447710340150)
Yuan S, Carter P, Bruzelius M, Vithayathil M, Kar S, Mason AM, et al. Effects of tumour necrosis factor on cardiovascular disease and cancer: a two-sample Mendelian randomization study. EBioMedicine. 2020;59:102956. https://doi.org/10.1016/j.ebiom.2020.102956 . (PMID: 10.1016/j.ebiom.2020.102956328056267452586)
Abdulmajid B, Blanken AB, van Geel EH, Daams JG, Nurmohamed MT. Effect of TNF inhibitors on arterial stiffness and intima media thickness in rheumatoid arthritis: a systematic review and meta-analysis. Clin Rheumatol. 2023;42:999–1011. https://doi.org/10.1007/s10067-023-06505-y . (PMID: 10.1007/s10067-023-06505-y3664555010017587)
Roubille C, Richer V, Starnino T, McCourt C, McFarlane A, Fleming P, et al. The effects of tumour necrosis factor inhibitors, methotrexate, non-steroidal anti-inflammatory drugs and corticosteroids on cardiovascular events in rheumatoid arthritis, psoriasis and psoriatic arthritis: a systematic review and meta-analysis. Ann Rheum Dis. 2015;74:480–9. https://doi.org/10.1136/annrheumdis-2014-206624 . (PMID: 10.1136/annrheumdis-2014-20662425561362)
Pujades-Rodriguez M, Morgan AW, Cubbon RM, Wu J. Dose-dependent oral glucocorticoid cardiovascular risks in people with immune-mediated inflammatory diseases: a population-based cohort study. PLoS Med. 2020;17:e1003432. https://doi.org/10.1371/journal.pmed.1003432 . (PMID: 10.1371/journal.pmed.1003432332706497714202)
van Horssen R, ten Hagen TLM, Eggermont AMM. TNF-α in Cancer treatment: molecular insights, antitumor effects, and clinical utility. Oncologist. 2006;11:397–408. https://doi.org/10.1634/theoncologist.11-4-397 . (PMID: 10.1634/theoncologist.11-4-39716614236)
Carswell EA, Old LJ, Kassel RL, Green S, Fiore N, Williamson B. An endotoxin-induced serum factor that causes necrosis of tumors. Proc Natl Acad Sci. 1975;72:3666–70. https://doi.org/10.1073/pnas.72.9.3666 . (PMID: 10.1073/pnas.72.9.36661103152433057)
Askling J, Fahrbach K, Nordstrom B, Ross S, Schmid CH, Symmons D. Cancer risk with tumor necrosis factor alpha (TNF) inhibitors: meta-analysis of randomized controlled trials of adalimumab, etanercept, and infliximab using patient level data. Pharmacoepidemiol Drug Saf. 2011;20:119–30. https://doi.org/10.1002/pds.2046 . (PMID: 10.1002/pds.204621254282)
Thompson AE, Rieder SW, Pope JE. Tumor necrosis factor therapy and the risk of serious infection and malignancy in patients with early rheumatoid arthritis: a meta-analysis of randomized controlled trials. Arthritis Rheum. 2011;63:1479–85. https://doi.org/10.1002/art.30310 . (PMID: 10.1002/art.3031021360522)
Solomon DH, Mercer E, Kavanaugh A. Observational studies on the risk of cancer associated with tumor necrosis factor inhibitors in rheumatoid arthritis: a review of their methodologies and results. Arthritis Rheum. 2012;64:21–32. https://doi.org/10.1002/art.30653 . (PMID: 10.1002/art.30653218983543241884)
Askling J, van Vollenhoven RF, Granath F, Raaschou P, Fored CM, Baecklund E, et al. Cancer risk in patients with rheumatoid arthritis treated with anti-tumor necrosis factor alpha therapies: does the risk change with the time since start of treatment? Arthritis Rheum. 2009;60:3180–9. https://doi.org/10.1002/art.24941 . (PMID: 10.1002/art.2494119877027)
Dreyer L, Mellemkjær L, Andersen AR, Bennett P, Poulsen UE, Ellingsen TJ, et al. Incidences of overall and site specific cancers in TNFα inhibitor treated patients with rheumatoid arthritis and other arthritides—a follow-up study from the DANBIO Registry. Ann Rheum Dis. 2013;72:79–82. https://doi.org/10.1136/annrheumdis-2012-201969 . (PMID: 10.1136/annrheumdis-2012-20196922945500)
Lopez-Olivo MA, Tayar JH, Martinez-Lopez JA, Pollono EN, Cueto JP, Rosa Gonzales-Crespo M, et al. Risk of malignancies in patients with rheumatoid arthritis treated with biologic therapy: a meta-analysis. JAMA. 2012;308:898–908. https://doi.org/10.1001/2012.jama.10857 . (PMID: 10.1001/2012.jama.1085722948700)
Wolfe F, Michaud K. Lymphoma in rheumatoid arthritis: the effect of methotrexate and anti-tumor necrosis factor therapy in 18,572 patients. Arthritis Rheum. 2004;50:1740–51. https://doi.org/10.1002/art.20311 . (PMID: 10.1002/art.2031115188349)
Mariette X, Cazals-Hatem D, Warszawki J, Liote F, Balandraud N, Sibilia J, et al. Lymphomas in rheumatoid arthritis patients treated with methotrexate: a 3-year prospective study in France. Blood. 2002;99:3909–15. https://doi.org/10.1182/blood.v99.11.3909 . (PMID: 10.1182/blood.v99.11.390912010788)
Full Prescribing Information (Upadacitinib) n.d. https://www.accessdata.fda.gov/drugsatfda_docs/label/2022/211675s003lbl.pdf . Accessed 12 Feb 2023.
European Medicines Agency. EMA confirms measures to minimise risk of serious side effects with Janus kinase inhibitors for chronic inflammatory disorders. 2023. https://www.ema.europa.eu/en/news/ema-confirms-measures-minimise-risk-serious-side-effects-janus-kinase-inhibitors-chronic . Accessed 21 Jul 2023.
Medicines and Healthcare products Regulatory Agency. Janus kinase (JAK) inhibitors: new measures to reduce risks of major cardiovascular events, malignancy, venous thromboembolism, serious infections and increased mortality. 2023. https://www.gov.uk/drug-safety-update/janus-kinase-jak-inhibitors-new-measures-to-reduce-risks-of-major-cardiovascular-events-malignancy-venous-thromboembolism-serious-infections-and-increased-mortality . Accessed 21 Jul 2023.
Smolen JS, Landewé RBM, Bergstra SA, Kerschbaumer A, Sepriano A, Aletaha D, et al. EULAR recommendations for the management of rheumatoid arthritis with synthetic and biological disease-modifying antirheumatic drugs: 2022 update. Ann Rheum Dis. 2023;82:3–18. https://doi.org/10.1136/ard-2022-223356 . (PMID: 10.1136/ard-2022-22335636357155)
Fraenkel L, Bathon JM, England BR, St Clair EW, Arayssi T, Carandang K, et al. 2021 American College of Rheumatology guideline for the treatment of rheumatoid arthritis. Arthritis Care Res. 2021;73:924–39. https://doi.org/10.1002/acr.24596 . (PMID: 10.1002/acr.24596)
National Institute for Health and Care Excellence. Tofacitinib for moderate to severe rheumatoid arthritis. 2017. https://www.nice.org.uk/guidance/ta480 . Accessed 21 Jul 2023.
Kragstrup TW, Glintborg B, Svensson AL, McMaster C, Robinson PC, Deleuran B, et al. Waiting for JAK inhibitor safety data. RMD Open. 2022. https://doi.org/10.1136/rmdopen-2022-002236 . (PMID: 10.1136/rmdopen-2022-002236351973638867353)
Liew DFL, Robinson PC. Preventive medicine in rheumatology: COVID-19 and its lessons for better health outcomes. Lancet Rheumatol. 2022;4:e743–5. https://doi.org/10.1016/S2665-9913(22)00229-6 . (PMID: 10.1016/S2665-9913(22)00229-6359917619381024)
Winthrop KL, Cohen SB. Oral surveillance and JAK inhibitor safety: the theory of relativity. Nat Rev Rheumatol. 2022;18:301–4. https://doi.org/10.1038/s41584-022-00767-7 . (PMID: 10.1038/s41584-022-00767-7353184628939241)
McMaster C, Bird A, Liew DF, Buchanan RR, Owen CE, Chapman WW, et al. Artificial intelligence and deep learning for rheumatologists: a primer and review of the literature. Arthritis Rheumatol. 2022. https://doi.org/10.1002/art.42296 . (PMID: 10.1002/art.422963585786510092842)
Singh N, Grivas P, Makris UE, Suarez-Almazor ME, O’Hare AM, Barton JL. Use of disease-modifying antirheumatic drugs in rheumatoid arthritis: supporting shared decision-making between patients with cancer and clinicians. ACR Open Rheumatol. 2023. https://doi.org/10.1002/acr2.11552 . (PMID: 10.1002/acr2.115523787288410267802)
Health Canada. Janus kinase inhibitors and the risk of major adverse cardiovascular events, thrombosis (including fatal events) and malignancy. 2022. https://recalls-rappels.canada.ca/en/alert-recall/janus-kinase-inhibitors-and-risk-major-adverse-cardiovascular-events-thrombosis . Accessed 21 Jul 2023.
Therapeutic Goods Administration. Important safety information for Janus kinase (JAK) inhibitors. 2023. https://www.tga.gov.au/news/safety-updates/important-safety-information-janus-kinase-jak-inhibitors . Accessed 21 Jul 2023.
المشرفين على المادة: 0 (Janus Kinase Inhibitors)
0 (Antirheumatic Agents)
تواريخ الأحداث: Date Created: 20230725 Date Completed: 20231109 Latest Revision: 20240716
رمز التحديث: 20240716
مُعرف محوري في PubMed: PMC10632271
DOI: 10.1007/s40264-023-01333-0
PMID: 37490213
قاعدة البيانات: MEDLINE
الوصف
تدمد:1179-1942
DOI:10.1007/s40264-023-01333-0