دورية أكاديمية

Adrenal Anion Channels: New Roles in Zona Glomerulosa Physiology and in the Pathophysiology of Primary Aldosteronism.

التفاصيل البيبلوغرافية
العنوان: Adrenal Anion Channels: New Roles in Zona Glomerulosa Physiology and in the Pathophysiology of Primary Aldosteronism.
المؤلفون: Stölting G; Center of Functional Genomics, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany., Scholl UI; Center of Functional Genomics, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany. ute.scholl@bih-charite.de.
المصدر: Handbook of experimental pharmacology [Handb Exp Pharmacol] 2024; Vol. 283, pp. 59-79.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Springer-Verlag Country of Publication: Germany NLM ID: 7902231 Publication Model: Print Cited Medium: Print ISSN: 0171-2004 (Print) Linking ISSN: 01712004 NLM ISO Abbreviation: Handb Exp Pharmacol Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Berlin, New York, Springer-Verlag.
مواضيع طبية MeSH: Zona Glomerulosa* , Hyperaldosteronism*/genetics, Animals ; Aldosterone ; Ion Channels ; Signal Transduction
مستخلص: The mineralocorticoid aldosterone is produced in the zona glomerulosa of the adrenal cortex. Its synthesis is regulated by the serum concentrations of the peptide hormone angiotensin II and potassium. The primary role of aldosterone is to control blood volume and electrolytes. The autonomous production of aldosterone (primary aldosteronism, PA) is considered the most frequent cause of secondary hypertension. Aldosterone-producing adenomas and (micro-)nodules are frequent causes of PA and often carry somatic mutations in ion channels and transporters. Rare familial forms of PA are due to germline mutations. Both somatic and germline mutations in the chloride channel gene CLCN2, encoding ClC-2, have been identified in PA. Clinical findings and results from cell culture and animal models have advanced our knowledge about the role of anions in PA. The zona glomerulosa of the adrenal gland has now been firmly established as a tissue in which anions play a significant role for signaling. In this overview, we aim to summarize the current knowledge and highlight novel concepts as well as open questions.
(© 2023. The Author(s), under exclusive license to Springer Nature Switzerland AG.)
References: Abou Nader N, Boyer A (2021) Adrenal cortex development and maintenance: knowledge acquired from mouse models. Endocrinology 162(12). https://doi.org/10.1210/endocr/bqab187.
Ahmed N, Ramjeesingh M, Wong S, Varga A, Garami E, Bear CE (2000) Chloride channel activity of ClC-2 is modified by the actin cytoskeleton. Biochem J 352(Pt 3):789–794. (PMID: 10.1042/bj3520789111046871221518)
Azizan EA, Poulsen H, Tuluc P, Zhou J, Clausen MV, Lieb A, Maniero C, Garg S, Bochukova EG, Zhao W, Shaikh LH, Brighton CA, Teo AE, Davenport AP, Dekkers T, Tops B, Kusters B, Ceral J, Yeo GS, Neogi SG, McFarlane I, Rosenfeld N, Marass F, Hadfield J, Margas W, Chaggar K, Solar M, Deinum J, Dolphin AC, Farooqi IS, Striessnig J, Nissen P, Brown MJ (2013) Somatic mutations in ATP1A1 and CACNA1D underlie a common subtype of adrenal hypertension. Nat Genet 45(9):1055–1060. https://doi.org/10.1038/ng.2716. (PMID: 10.1038/ng.271623913004)
Ben-Ari Y, Khalilov I, Kahle KT, Cherubini E (2012) The GABA excitatory/inhibitory shift in brain maturation and neurological disorders. Neuroscientist 18(5):467–486. https://doi.org/10.1177/1073858412438697. (PMID: 10.1177/107385841243869722547529)
Beuschlein F, Boulkroun S, Osswald A, Wieland T, Nielsen HN, Lichtenauer UD, Penton D, Schack VR, Amar L, Fischer E, Walther A, Tauber P, Schwarzmayr T, Diener S, Graf E, Allolio B, Samson-Couterie B, Benecke A, Quinkler M, Fallo F, Plouin PF, Mantero F, Meitinger T, Mulatero P, Jeunemaitre X, Warth R, Vilsen B, Zennaro MC, Strom TM, Reincke M (2013) Somatic mutations in ATP1A1 and ATP2B3 lead to aldosterone-producing adenomas and secondary hypertension. Nat Genet 45(4):440–444. https://doi.org/10.1038/ng.2550. (PMID: 10.1038/ng.255023416519)
Blanz J, Schweizer M, Auberson M, Maier H, Muenscher A, Hubner CA, Jentsch TJ (2007) Leukoencephalopathy upon disruption of the chloride channel ClC-2. J Neurosci 27(24):6581–6589. https://doi.org/10.1523/JNEUROSCI.0338-07.2007. (PMID: 10.1523/JNEUROSCI.0338-07.2007175678196672451)
Bosl MR, Stein V, Hubner C, Zdebik AA, Jordt SE, Mukhopadhyay AK, Davidoff MS, Holstein AF, Jentsch TJ (2001) Male germ cells and photoreceptors, both dependent on close cell-cell interactions, degenerate upon ClC-2 cl(−) channel disruption. EMBO J 20(6):1289–1299. https://doi.org/10.1093/emboj/20.6.1289. (PMID: 10.1093/emboj/20.6.128911250895145530)
Catalan M, Cornejo I, Figueroa CD, Niemeyer MI, Sepulveda FV, Cid LP (2002) ClC-2 in Guinea pig colon: mRNA, immunolabeling, and functional evidence for surface epithelium localization. Am J Physiol Gastrointest Liver Physiol 283(4):G1004–G1013. https://doi.org/10.1152/ajpgi.00158.2002. (PMID: 10.1152/ajpgi.00158.200212223361)
Choi M, Scholl UI, Yue P, Bjorklund P, Zhao B, Nelson-Williams C, Ji W, Cho Y, Patel A, Men CJ, Lolis E, Wisgerhof MV, Geller DS, Mane S, Hellman P, Westin G, Akerstrom G, Wang W, Carling T, Lifton RP (2011) K+ channel mutations in adrenal aldosterone-producing adenomas and hereditary hypertension. Science 331(6018):768–772. https://doi.org/10.1126/science.1198785. (PMID: 10.1126/science.1198785213110223371087)
Chorvatova A, Gendron L, Bilodeau L, Gallo-Payet N, Payet MD (2000) A Ras-dependent chloride current activated by adrenocorticotropin in rat adrenal zona glomerulosa cells. Endocrinology 141(2):684–692. https://doi.org/10.1210/endo.141.2.7328. (PMID: 10.1210/endo.141.2.732810650950)
Cohen JJ, Hulter HN, Smithline N, Melby JC, Schwartz WB (1976) The critical role of the adrenal gland in the renal regulation of acid-base equilibrium during chronic hypotonic expansion. Evidence that chronic hyponatremia is a potent stimulus to aldosterone secretion. J Clin Invest 58(5):1201–1208. https://doi.org/10.1172/JCI108573. (PMID: 10.1172/JCI108573993340333288)
Collaboration NCDRF (2021) Worldwide trends in hypertension prevalence and progress in treatment and control from 1990 to 2019: a pooled analysis of 1201 population-representative studies with 104 million participants. Lancet 398(10304):957–980. https://doi.org/10.1016/S0140-6736(21)01330-1. (PMID: 10.1016/S0140-6736(21)01330-1)
de Santiago JA, Nehrke K, Arreola J (2005) Quantitative analysis of the voltage-dependent gating of mouse parotid ClC-2 chloride channel. J Gen Physiol 126(6):591–603. https://doi.org/10.1085/jgp.200509310. (PMID: 10.1085/jgp.200509310162865062266594)
Depienne C, Bugiani M, Dupuits C, Galanaud D, Touitou V, Postma N, van Berkel C, Polder E, Tollard E, Darios F, Brice A, de Die-Smulders CE, Vles JS, Vanderver A, Uziel G, Yalcinkaya C, Frints SG, Kalscheuer VM, Klooster J, Kamermans M, Abbink TE, Wolf NI, Sedel F, van der Knaap MS (2013) Brain white matter oedema due to ClC-2 chloride channel deficiency: an observational analytical study. Lancet Neurol 12(7):659–668. https://doi.org/10.1016/S1474-4422(13)70053-X. (PMID: 10.1016/S1474-4422(13)70053-X23707145)
Dutta RK, Arnesen T, Heie A, Walz M, Alesina P, Soderkvist P, Gimm O (2019) A somatic mutation in CLCN2 identified in a sporadic aldosterone-producing adenoma. Eur J Endocrinol 181(5):K37–K41. https://doi.org/10.1530/EJE-19-0377. (PMID: 10.1530/EJE-19-037731491746)
Elias H, Pauly JE (1956) The structure of the human adrenal cortex. Endocrinology 58(6):714–738. https://doi.org/10.1210/endo-58-6-714. (PMID: 10.1210/endo-58-6-71413330672)
Fernandes-Rosa FL, Daniil G, Orozco IJ, Goppner C, El Zein R, Jain V, Boulkroun S, Jeunemaitre X, Amar L, Lefebvre H, Schwarzmayr T, Strom TM, Jentsch TJ, Zennaro MC (2018) A gain-of-function mutation in the CLCN2 chloride channel gene causes primary aldosteronism. Nat Genet 50(3):355–361. https://doi.org/10.1038/s41588-018-0053-8. (PMID: 10.1038/s41588-018-0053-829403012)
Funder JW, Carey RM, Mantero F, Murad MH, Reincke M, Shibata H, Stowasser M, Young WF Jr (2016) The management of primary aldosteronism: case detection, diagnosis, and treatment: an endocrine society clinical practice guideline. J Clin Endocrinol Metab 101(5):1889–1916. https://doi.org/10.1210/jc.2015-4061. (PMID: 10.1210/jc.2015-406126934393)
Gaitan-Penas H, Apaja PM, Arnedo T, Castellanos A, Elorza-Vidal X, Soto D, Gasull X, Lukacs GL, Estevez R (2017) Leukoencephalopathy-causing CLCN2 mutations are associated with impaired Cl(−) channel function and trafficking. J Physiol 595(22):6993–7008. https://doi.org/10.1113/JP275087. (PMID: 10.1113/JP275087289053835685823)
Gancayco CA, Gerding MR, Breault DT, Beenhakker MP, Barrett PQ, Guagliardo NA (2022) Intrinsic adrenal TWIK-related acid-sensitive TASK channel dysfunction produces spontaneous calcium oscillations sufficient to drive AngII (angiotensin II)-unresponsive hyperaldosteronism. Hypertension 79(11):2552–2564. https://doi.org/10.1161/HYPERTENSIONAHA.122.19557. (PMID: 10.1161/HYPERTENSIONAHA.122.1955736129175)
Garcia-Olivares J, Alekov A, Boroumand MR, Begemann B, Hidalgo P, Fahlke C (2008) Gating of human ClC-2 chloride channels and regulation by carboxy-terminal domains. J Physiol 586(22):5325–5336. https://doi.org/10.1113/jphysiol.2008.158097. (PMID: 10.1113/jphysiol.2008.158097188018432655382)
Goppner C, Orozco IJ, Hoegg-Beiler MB, Soria AH, Hubner CA, Fernandes-Rosa FL, Boulkroun S, Zennaro MC, Jentsch TJ (2019) Pathogenesis of hypertension in a mouse model for human CLCN2 related hyperaldosteronism. Nat Commun 10(1):4678. https://doi.org/10.1038/s41467-019-12113-9. (PMID: 10.1038/s41467-019-12113-9316159796794291)
Goppner C, Soria AH, Hoegg-Beiler MB, Jentsch TJ (2021) Cellular basis of ClC-2 Cl(−) channel-related brain and testis pathologies. J Biol Chem 296:100074. https://doi.org/10.1074/jbc.RA120.016031. (PMID: 10.1074/jbc.RA120.01603133187987)
Grunder S, Thiemann A, Pusch M, Jentsch TJ (1992) Regions involved in the opening of CIC-2 chloride channel by voltage and cell volume. Nature 360(6406):759–762. https://doi.org/10.1038/360759a0. (PMID: 10.1038/360759a01334533)
Hayama N, Wang W, Schneider EG (1995) Osmolality-induced changes in aldosterone secretion involve a chloride-dependent process. Am J Phys 268(1 Pt 2):R8–R13. https://doi.org/10.1152/ajpregu.1995.268.1.R8.
Hinzpeter A, Fritsch J, Borot F, Trudel S, Vieu DL, Brouillard F, Baudouin-Legros M, Clain J, Edelman A, Ollero M (2007) Membrane cholesterol content modulates ClC-2 gating and sensitivity to oxidative stress. J Biol Chem 282(4):2423–2432. https://doi.org/10.1074/jbc.M608251200. (PMID: 10.1074/jbc.M60825120017110372)
Hoffmann EK, Lambert IH, Pedersen SF (2009) Physiology of cell volume regulation in vertebrates. Physiol Rev 89(1):193–277. https://doi.org/10.1152/physrev.00037.2007. (PMID: 10.1152/physrev.00037.200719126758)
Hu C, Rusin CG, Tan Z, Guagliardo NA, Barrett PQ (2012) Zona glomerulosa cells of the mouse adrenal cortex are intrinsic electrical oscillators. J Clin Invest 122(6):2046–2053. https://doi.org/10.1172/JCI61996. (PMID: 10.1172/JCI61996225468543966877)
Huang ZM, Prasad C, Britton FC, Ye LL, Hatton WJ, Duan D (2009) Functional role of CLC-2 chloride inward rectifier channels in cardiac sinoatrial nodal pacemaker cells. J Mol Cell Cardiol 47(1):121–132. https://doi.org/10.1016/j.yjmcc.2009.04.008. (PMID: 10.1016/j.yjmcc.2009.04.008193761272735135)
Jaffe G, Gray Z, Krishnan G, Stedman M, Zheng Y, Han J, Chertow GM, Leppert JT, Bhalla V (2020) Screening rates for primary aldosteronism in resistant hypertension: a cohort study. Hypertension 75(3):650–659. https://doi.org/10.1161/HYPERTENSIONAHA.119.14359. (PMID: 10.1161/HYPERTENSIONAHA.119.1435932008436)
Jentsch TJ, Pusch M (2018) CLC chloride channels and transporters: structure, function, physiology, and disease. Physiol Rev 98(3):1493–1590. https://doi.org/10.1152/physrev.00047.2017. (PMID: 10.1152/physrev.00047.201729845874)
Jeworutzki E, Lopez-Hernandez T, Capdevila-Nortes X, Sirisi S, Bengtsson L, Montolio M, Zifarelli G, Arnedo T, Muller CS, Schulte U, Nunes V, Martinez A, Jentsch TJ, Gasull X, Pusch M, Estevez R (2012) GlialCAM, a protein defective in a leukodystrophy, serves as a ClC-2 Cl(−) channel auxiliary subunit. Neuron 73(5):951–961. https://doi.org/10.1016/j.neuron.2011.12.039. (PMID: 10.1016/j.neuron.2011.12.039224052053334819)
Jordt SE, Jentsch TJ (1997) Molecular dissection of gating in the ClC-2 chloride channel. EMBO J 16(7):1582–1592. https://doi.org/10.1093/emboj/16.7.1582. (PMID: 10.1093/emboj/16.7.158291307031169762)
Kojima I, Kojima K, Kreutter D, Rasmussen H (1984) The temporal integration of the aldosterone secretory response to angiotensin occurs via two intracellular pathways. J Biol Chem 259(23):14448–14457. (PMID: 10.1016/S0021-9258(17)42620-26238962)
Koster AK, Reese AL, Kuryshev Y, Wen X, McKiernan KA, Gray EE, Wu C, Huguenard JR, Maduke M, Du Bois J (2020) Development and validation of a potent and specific inhibitor for the CLC-2 chloride channel. Proc Natl Acad Sci U S A 117(51):32711–32721. https://doi.org/10.1073/pnas.2009977117. (PMID: 10.1073/pnas.2009977117332774317768775)
Lifton RP, Dluhy RG, Powers M, Rich GM, Cook S, Ulick S, Lalouel JM (1992) A chimaeric 11 beta-hydroxylase/aldosterone synthase gene causes glucocorticoid-remediable aldosteronism and human hypertension. Nature 355(6357):262–265. https://doi.org/10.1038/355262a0. (PMID: 10.1038/355262a01731223)
Losel R, Wehling M (2003) Nongenomic actions of steroid hormones. Nat Rev Mol Cell Biol 4(1):46–56. https://doi.org/10.1038/nrm1009. (PMID: 10.1038/nrm100912511868)
Lu NZ, Wardell SE, Burnstein KL, Defranco D, Fuller PJ, Giguere V, Hochberg RB, McKay L, Renoir JM, Weigel NL, Wilson EM, McDonnell DP, Cidlowski JA (2006) International Union of Pharmacology. LXV. The pharmacology and classification of the nuclear receptor superfamily: glucocorticoid, mineralocorticoid, progesterone, and androgen receptors. Pharmacol Rev 58(4):782–797. https://doi.org/10.1124/pr.58.4.9. (PMID: 10.1124/pr.58.4.917132855)
Ma T, Wang L, Chai A, Liu C, Cui W, Yuan S, Wing Ngor AS, Sun L, Zhang X, Zhang Z, Lu J, Gao Y, Wang P, Li Z, Liang Y, Vogel H, Wang YT, Wang D, Yan K, Zhang H (2023) Cryo-EM structures of ClC-2 chloride channel reveal the blocking mechanism of its specific inhibitor AK-42. Nat Commun 14(1):3424. https://doi.org/10.1038/s41467-023-39218-6. (PMID: 10.1038/s41467-023-39218-63729615210256776)
Maniero C, Zhou J, Shaikh LH, Azizan EA, McFarlane I, Neogi S, Scudieri P, Galietta LJ, Brown MJ (2015) Role of ANO4 in regulation of aldosterone secretion in the zona glomerulosa of the human adrenal gland. Lancet 385 Suppl 1:S62. https://doi.org/10.1016/S0140-6736(15)60377-4. (PMID: 10.1016/S0140-6736(15)60377-426312884)
Monticone S, Burrello J, Tizzani D, Bertello C, Viola A, Buffolo F, Gabetti L, Mengozzi G, Williams TA, Rabbia F, Veglio F, Mulatero P (2017) Prevalence and clinical manifestations of primary aldosteronism encountered in primary care practice. J Am Coll Cardiol 69(14):1811–1820. https://doi.org/10.1016/j.jacc.2017.01.052. (PMID: 10.1016/j.jacc.2017.01.05228385310)
Nanba K, Rainey WE (2021) GENETICS IN ENDOCRINOLOGY: impact of race and sex on genetic causes of aldosterone-producing adenomas. Eur J Endocrinol 185(1):R1–R11. https://doi.org/10.1530/EJE-21-0031. (PMID: 10.1530/EJE-21-0031339002058480207)
Nanba K, Blinder AR, Rege J, Hattangady NG, Else T, Liu CJ, Tomlins SA, Vats P, Kumar-Sinha C, Giordano TJ, Rainey WE (2020) Somatic CACNA1H mutation as a cause of aldosterone-producing adenoma. Hypertension 75(3):645–649. https://doi.org/10.1161/HYPERTENSIONAHA.119.14349. (PMID: 10.1161/HYPERTENSIONAHA.119.1434931983310)
Nishimoto K, Tomlins SA, Kuick R, Cani AK, Giordano TJ, Hovelson DH, Liu CJ, Sanjanwala AR, Edwards MA, Gomez-Sanchez CE, Nanba K, Rainey WE (2015) Aldosterone-stimulating somatic gene mutations are common in normal adrenal glands. Proc Natl Acad Sci U S A 112(33):E4591–E4599. https://doi.org/10.1073/pnas.1505529112. (PMID: 10.1073/pnas.1505529112262403694547250)
Omata K, Anand SK, Hovelson DH, Liu CJ, Yamazaki Y, Nakamura Y, Ito S, Satoh F, Sasano H, Rainey WE, Tomlins SA (2017) Aldosterone-producing cell clusters frequently harbor somatic mutations and accumulate with age in normal adrenals. J Endocr Soc 1(7):787–799. https://doi.org/10.1210/js.2017-00134. (PMID: 10.1210/js.2017-00134292645305686701)
Omata K, Satoh F, Morimoto R, Ito S, Yamazaki Y, Nakamura Y, Anand SK, Guo Z, Stowasser M, Sasano H, Tomlins SA, Rainey WE (2018) Cellular and genetic causes of idiopathic hyperaldosteronism. Hypertension 72(4):874–880. https://doi.org/10.1161/HYPERTENSIONAHA.118.11086. (PMID: 10.1161/HYPERTENSIONAHA.118.1108630354720)
Park E, MacKinnon R (2018) Structure of the CLC-1 chloride channel from Homo sapiens. elife 7. https://doi.org/10.7554/eLife.36629.
Park E, Campbell EB, MacKinnon R (2017) Structure of a CLC chloride ion channel by cryo-electron microscopy. Nature 541(7638):500–505. https://doi.org/10.1038/nature20812. (PMID: 10.1038/nature2081228002411)
Penton D, Bandulik S, Schweda F, Haubs S, Tauber P, Reichold M, Cong LD, El Wakil A, Budde T, Lesage F, Lalli E, Zennaro MC, Warth R, Barhanin J (2012) Task3 potassium channel gene invalidation causes low renin and salt-sensitive arterial hypertension. Endocrinology 153(10):4740–4748. https://doi.org/10.1210/en.2012-1527. (PMID: 10.1210/en.2012-152722878402)
Rege J, Nanba K, Blinder AR, Plaska S, Udager AM, Vats P, Kumar-Sinha C, Giordano TJ, Rainey WE, Else T (2020) Identification of somatic mutations in CLCN2 in aldosterone-producing adenomas. J Endocr Soc 4(10):bvaa123. https://doi.org/10.1210/jendso/bvaa123. (PMID: 10.1210/jendso/bvaa123330337897528565)
Rege J, Nanba K, Bandulik S, Kosmann C, Blinder AR, Vats P, Kumar-Sinha C, Lerario AM, Else T, Yamazaki Y (2022) Zinc transporter somatic gene mutations cause primary aldosteronism. bioRxiv:2022.2007. 2025.501443.
Reichhart N, Schoberl S, Keckeis S, Alfaar AS, Roubeix C, Cordes M, Crespo-Garcia S, Haeckel A, Kociok N, Fockler R, Fels G, Mataruga A, Rauh R, Milenkovic VM, Zuhlke K, Klussmann E, Schellenberger E, Strauss O (2019) Anoctamin-4 is a bona fide Ca(2+)-dependent non-selective cation channel. Sci Rep 9(1):2257. https://doi.org/10.1038/s41598-018-37287-y. (PMID: 10.1038/s41598-018-37287-y307831376381168)
Rossi GP, Bernini G, Caliumi C, Desideri G, Fabris B, Ferri C, Ganzaroli C, Giacchetti G, Letizia C, Maccario M, Mallamaci F, Mannelli M, Mattarello MJ, Moretti A, Palumbo G, Parenti G, Porteri E, Semplicini A, Rizzoni D, Rossi E, Boscaro M, Pessina AC, Mantero F (2006) A prospective study of the prevalence of primary aldosteronism in 1,125 hypertensive patients. J Am Coll Cardiol 48(11):2293–2300. https://doi.org/10.1016/j.jacc.2006.07.059. (PMID: 10.1016/j.jacc.2006.07.05917161262)
Saint-Martin C, Gauvain G, Teodorescu G, Gourfinkel-An I, Fedirko E, Weber YG, Maljevic S, Ernst JP, Garcia-Olivares J, Fahlke C, Nabbout R, LeGuern E, Lerche H, Poncer JC, Depienne C (2009) Two novel CLCN2 mutations accelerating chloride channel deactivation are associated with idiopathic generalized epilepsy. Hum Mutat 30(3):397–405. https://doi.org/10.1002/humu.20876. (PMID: 10.1002/humu.2087619191339)
Schewe J, Seidel E, Forslund S, Marko L, Peters J, Muller DN, Fahlke C, Stolting G, Scholl U (2019) Elevated aldosterone and blood pressure in a mouse model of familial hyperaldosteronism with ClC-2 mutation. Nat Commun 10(1):5155. https://doi.org/10.1038/s41467-019-13033-4. (PMID: 10.1038/s41467-019-13033-4317278966856192)
Scholl UI, Nelson-Williams C, Yue P, Grekin R, Wyatt RJ, Dillon MJ, Couch R, Hammer LK, Harley FL, Farhi A, Wang WH, Lifton RP (2012) Hypertension with or without adrenal hyperplasia due to different inherited mutations in the potassium channel KCNJ5. Proc Natl Acad Sci U S A 109(7):2533–2538. https://doi.org/10.1073/pnas.1121407109. (PMID: 10.1073/pnas.1121407109223084863289329)
Scholl UI, Goh G, Stolting G, de Oliveira RC, Choi M, Overton JD, Fonseca AL, Korah R, Starker LF, Kunstman JW, Prasad ML, Hartung EA, Mauras N, Benson MR, Brady T, Shapiro JR, Loring E, Nelson-Williams C, Libutti SK, Mane S, Hellman P, Westin G, Akerstrom G, Bjorklund P, Carling T, Fahlke C, Hidalgo P, Lifton RP (2013) Somatic and germline CACNA1D calcium channel mutations in aldosterone-producing adenomas and primary aldosteronism. Nat Genet 45(9):1050–1054. https://doi.org/10.1038/ng.2695. (PMID: 10.1038/ng.2695239130013876926)
Scholl UI, Stolting G, Nelson-Williams C, Vichot AA, Choi M, Loring E, Prasad ML, Goh G, Carling T, Juhlin CC, Quack I, Rump LC, Thiel A, Lande M, Frazier BG, Rasoulpour M, Bowlin DL, Sethna CB, Trachtman H, Fahlke C, Lifton RP (2015) Recurrent gain of function mutation in calcium channel CACNA1H causes early-onset hypertension with primary aldosteronism. elife 4. https://doi.org/10.7554/eLife.06315.
Scholl UI, Stolting G, Schewe J, Thiel A, Tan H, Nelson-Williams C, Vichot AA, Jin SC, Loring E, Untiet V, Yoo T, Choi J, Xu S, Wu A, Kirchner M, Mertins P, Rump LC, Onder AM, Gamble C, McKenney D, Lash RW, Jones DP, Chune G, Gagliardi P, Choi M, Gordon R, Stowasser M, Fahlke C, Lifton RP (2018) CLCN2 chloride channel mutations in familial hyperaldosteronism type II. Nat Genet 50(3):349–354. https://doi.org/10.1038/s41588-018-0048-5. (PMID: 10.1038/s41588-018-0048-5294030115862758)
Seidel E, Schewe J, Zhang J, Dinh HA, Forslund SK, Marko L, Hellmig N, Peters J, Muller DN, Lifton RP, Nottoli T, Stolting G, Scholl UI (2021) Enhanced Ca(2+) signaling, mild primary aldosteronism, and hypertension in a familial hyperaldosteronism mouse model (Cacna1h (M1560V/+) ). Proc Natl Acad Sci U S A 118(17). https://doi.org/10.1073/pnas.2014876118.
Spat A, Hunyady L (2004) Control of aldosterone secretion: a model for convergence in cellular signaling pathways. Physiol Rev 84(2):489–539. https://doi.org/10.1152/physrev.00030.2003. (PMID: 10.1152/physrev.00030.200315044681)
Spyroglou A, Bozoglu T, Rawal R, De Leonardis F, Sterner C, Boulkroun S, Benecke AG, Monti L, Zennaro MC, Petersen AK, Doring A, Rossi A, Bidlingmaier M, Warth R, Gieger C, Reincke M, Beuschlein F (2014) Diastrophic dysplasia sulfate transporter (SLC26A2) is expressed in the adrenal cortex and regulates aldosterone secretion. Hypertension 63(5):1102–1109. https://doi.org/10.1161/HYPERTENSIONAHA.113.02504. (PMID: 10.1161/HYPERTENSIONAHA.113.0250424591336)
Stolting G, Teodorescu G, Begemann B, Schubert J, Nabbout R, Toliat MR, Sander T, Nurnberg P, Lerche H, Fahlke C (2013) Regulation of ClC-2 gating by intracellular ATP. Pflugers Arch 465(10):1423–1437. https://doi.org/10.1007/s00424-013-1286-0. (PMID: 10.1007/s00424-013-1286-0236329883778897)
Stolting G, Fischer M, Fahlke C (2014) CLC channel function and dysfunction in health and disease. Front Physiol 5:378. https://doi.org/10.3389/fphys.2014.00378. (PMID: 10.3389/fphys.2014.00378253399074188032)
Stowasser M, Gordon RD, Tunny TJ, Klemm SA, Finn WL, Krek AL (1992) Familial hyperaldosteronism type II: five families with a new variety of primary aldosteronism. Clin Exp Pharmacol Physiol 19(5):319–322. (PMID: 10.1111/j.1440-1681.1992.tb00462.x1521363)
Tadjine M, Lampron A, Ouadi L, Bourdeau I (2008) Frequent mutations of beta-catenin gene in sporadic secreting adrenocortical adenomas. Clin Endocrinol 68(2):264–270. https://doi.org/10.1111/j.1365-2265.2007.03033.x. (PMID: 10.1111/j.1365-2265.2007.03033.x)
Thiemann A, Grunder S, Pusch M, Jentsch TJ (1992) A chloride channel widely expressed in epithelial and non-epithelial cells. Nature 356(6364):57–60. https://doi.org/10.1038/356057a0. (PMID: 10.1038/356057a01311421)
Timmermans S, Souffriau J, Libert C (2019) A general introduction to glucocorticoid biology. Front Immunol 10:1545. https://doi.org/10.3389/fimmu.2019.01545. (PMID: 10.3389/fimmu.2019.01545313336726621919)
Tuzel IH (1981) Comparison of adverse reactions to bumetanide and furosemide. J Clin Pharmacol 21(11):615–619. https://doi.org/10.1002/j.1552-4604.1981.tb05673.x. (PMID: 10.1002/j.1552-4604.1981.tb05673.x7338572)
Varela D, Niemeyer MI, Cid LP, Sepulveda FV (2002) Effect of an N-terminus deletion on voltage-dependent gating of the ClC-2 chloride channel. J Physiol 544(Pt 2):363–372. (PMID: 10.1113/jphysiol.2002.026096123818112290594)
Wang W, Schneider EG (1997) Potassium-induced aldosterone secretion involves a Cl(−)-dependent mechanism. Am J Phys 272(1 Pt 2):R183–R187. https://doi.org/10.1152/ajpregu.1997.272.1.R183. (PMID: 10.1152/ajpregu.1997.272.1.R183)
Wilke BU, Lindner M, Greifenberg L, Albus A, Kronimus Y, Bunemann M, Leitner MG, Oliver D (2014) Diacylglycerol mediates regulation of TASK potassium channels by Gq-coupled receptors. Nat Commun 5:5540. https://doi.org/10.1038/ncomms6540. (PMID: 10.1038/ncomms654025420509)
Williams TA, Gomez-Sanchez CE, Rainey WE, Giordano TJ, Lam AK, Marker A, Mete O, Yamazaki Y, Zerbini MCN, Beuschlein F, Satoh F, Burrello J, Schneider H, Lenders JWM, Mulatero P, Castellano I, Knosel T, Papotti M, Saeger W, Sasano H, Reincke M (2021) International histopathology consensus for unilateral primary aldosteronism. J Clin Endocrinol Metab 106(1):42–54. https://doi.org/10.1210/clinem/dgaa484. (PMID: 10.1210/clinem/dgaa48432717746)
Wu X, Garg S, Cabrera C, Azizan E, Zhou J, Mein C, Takaoka Y, Wozniak E, Zhao W, Marker A (2019) Somatic transmembrane domain mutations of a cell adhesion molecule, CADM1, cause primary aldosteronism by preventing gap junction communication between adrenocortical cells. In: Endocrine abstracts. Bioscientifica.
Wu CH, Peng KY, Hwang DY, Lin YH, Wu VC, Chueh JS (2021) Novel mutations detection with next-generation sequencing and its association with clinical outcome in unilateral primary aldosteronism. Biomedicine 9(9). https://doi.org/10.3390/biomedicines9091167.
Zhou J, Azizan EAB, Cabrera CP, Fernandes-Rosa FL, Boulkroun S, Argentesi G, Cottrell E, Amar L, Wu X, O'Toole S, Goodchild E, Marker A, Senanayake R, Garg S, Akerstrom T, Backman S, Jordan S, Polubothu S, Berney DM, Gluck A, Lines KE, Thakker RV, Tuthill A, Joyce C, Kaski JP, Karet Frankl FE, Metherell LA, Teo AED, Gurnell M, Parvanta L, Drake WM, Wozniak E, Klinzing D, Kuan JL, Tiang Z, Gomez Sanchez CE, Hellman P, Foo RSY, Mein CA, Kinsler VA, Bjorklund P, Storr HL, Zennaro MC, Brown MJ (2021) Somatic mutations of GNA11 and GNAQ in CTNNB1-mutant aldosterone-producing adenomas presenting in puberty, pregnancy or menopause. Nat Genet 53(9):1360–1372. https://doi.org/10.1038/s41588-021-00906-y. (PMID: 10.1038/s41588-021-00906-y343857109082578)
فهرسة مساهمة: Keywords: Aldosterone; CLCN2; Chloride channel; ClC-2; Oscillation
المشرفين على المادة: 4964P6T9RB (Aldosterone)
0 (Ion Channels)
تواريخ الأحداث: Date Created: 20230726 Date Completed: 20240105 Latest Revision: 20240105
رمز التحديث: 20240105
DOI: 10.1007/164_2023_680
PMID: 37495852
قاعدة البيانات: MEDLINE
الوصف
تدمد:0171-2004
DOI:10.1007/164_2023_680