دورية أكاديمية

Role of short-wave-sensitive 1 (sws1) in cone development and first feeding in larval zebrafish.

التفاصيل البيبلوغرافية
العنوان: Role of short-wave-sensitive 1 (sws1) in cone development and first feeding in larval zebrafish.
المؤلفون: Lu K; College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan, 430070, China.; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China., Liang XF; College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan, 430070, China. xufang_liang@hotmail.com.; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China. xufang_liang@hotmail.com., Tang SL; College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan, 430070, China.; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China., Wu J; College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan, 430070, China.; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China., Zhang L; College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan, 430070, China.; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China., Wang Y; College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan, 430070, China.; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China., Chai F; College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan, 430070, China.; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China.
المصدر: Fish physiology and biochemistry [Fish Physiol Biochem] 2023 Oct; Vol. 49 (5), pp. 801-813. Date of Electronic Publication: 2023 Jul 26.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Kluwer Academic Publishers Country of Publication: Netherlands NLM ID: 100955049 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1573-5168 (Electronic) Linking ISSN: 09201742 NLM ISO Abbreviation: Fish Physiol Biochem Subsets: MEDLINE
أسماء مطبوعة: Publication: Dordrecht ; Boston : Kluwer Academic Publishers
Original Publication: Amsterdam ; Berkeley : Kugler, 1986-
مواضيع طبية MeSH: Cone Opsins*/genetics , Cone Opsins*/metabolism , Zebrafish*/genetics , Zebrafish*/metabolism, Animals ; Opsins/genetics ; Opsins/metabolism ; Photoreceptor Cells, Vertebrate/metabolism ; Phylogeny ; Retinal Cone Photoreceptor Cells
مستخلص: Color vision is mediated by the expression of different major visual pigment proteins (opsins) on retinal photoreceptors. Vertebrates have four classes of cone opsins that are most sensitive to different wavelengths of light: short wavelength sensitive 1 (SWS1), short wavelength sensitive 2 (SWS2), medium wavelength sensitive (RH2), and long wavelength sensitive (LWS). UV wavelengths play important roles in foraging and communication. However, direct evidence provide links between sws1 and first feeding is lacking. Here, CRISPR/Cas9 technology was performed to generate mutant zebrafish lines with sws1 deletion. sws1 mutant zebrafish larvae exhibited decreased sws1, rh2-2, and lws1 expression, and increased rod gene (rho and gnat1) expression. Furthermore, the sws1-deficient larvae exhibited significantly reduced food intake, and the orexigenic genes npy and agrp signaling were upregulated at 6 days postfertilization (dpf). The transcription expression of sws1 and rh2-3 genes decreased in sws1 -/- adults compared to wild type. Surprisingly, the results of feeding at the adult stage were not the same with larvae. sws1 deficiency did not affect food intake and appetite gene expression at adult stages. These results reveal a role for sws1 in normal cone development and first feeding in larval zebrafish.
(© 2023. The Author(s), under exclusive licence to Springer Nature B.V.)
References: Allison WT, Barthel LK, Skebo KM, Takechi M, Kawamura S, Raymond PA (2010) Ontogeny of cone photoreceptor mosaics in zebrafish. J Comp Neurol 518:4182–4195. https://doi.org/10.1002/cne.22447. (PMID: 10.1002/cne.22447208787823376642)
Alvarez-Delfin K, Morris AC, Snelson CD, Gamse JT, Gupta T, Marlow FL, Mullins MC, Burgess HA, Granato M, Fadool JM (2009) Tbx2b is required for ultraviolet photoreceptor cell specification during zebrafish retinal development. P Natl Acad Sci USA 106:2023–2028. https://doi.org/10.1073/pnas.0809439106. (PMID: 10.1073/pnas.0809439106)
Beaudet L, Browman HI, Hawryshyn CW (1993) Optic nerve response and retinal structure in rainbow trout of different sizes. Vis Res 33:1739–1746. https://doi.org/10.1016/0042-6989(93)90164-R. (PMID: 10.1016/0042-6989(93)90164-R8266629)
Bianco IH, Kampff AR, Engert F (2011) Prey capture behavior evoked by simple visual stimuli in larval zebrafish. Front Syst Neurosci 5:101. https://doi.org/10.3389/fnsys.2011.00101. (PMID: 10.3389/fnsys.2011.00101222037933240898)
Bilotta J, Saszik S (2001) The zebrafish as a model visual system. Int J Dev Neurosci 19:621–629. https://doi.org/10.1016/S0736-5748(01)00050-8. (PMID: 10.1016/S0736-5748(01)00050-811705666)
Caves EM, Brandley NC, Johnsen S (2018) Visual acuity and the evolution of signals. Trends Ecol Evol 33:358–372. https://doi.org/10.1016/j.tree.2018.03.001. (PMID: 10.1016/j.tree.2018.03.00129609907)
Cepko CL (2015) The determination of rod and cone photoreceptor fate. Annu Rev vis Sci 1:211–234. https://doi.org/10.1146/annurev-vision-090814-121657. (PMID: 10.1146/annurev-vision-090814-12165728532380)
Cheng CL, Flamarique IN (2007) Chromatic organization of cone photoreceptors in the retina of rainbow trout: single cones irreversibly switch from UV (SWS1) to blue (SWS2) light sensitive opsin during natural development. J Exp Biol 210(Pt 23):4123–4135. https://doi.org/10.1242/jeb.009217. (PMID: 10.1242/jeb.00921718025012)
Cheng CL, Gan KJ, Flamarique IN (2007) The ultraviolet opsin is the first opsin expressed during retinal development of salmonid fishes. Invest Ophth vis Sci 48:866–873. https://doi.org/10.1167/iovs.06-0442. (PMID: 10.1167/iovs.06-0442)
Chisada S, Kurokawa T, Murashita K, Rønnestad I, Taniguchi Y, Toyoda A, Sakaki Y, Takeda S, Yoshiura Y (2014) Leptin receptor-deficient (knockout) medaka, Oryzias latipes, show chronical up-regulated levels of orexigenic neuropeptides, elevated food intake and stage specific effects on growth and fat allocation. Gen Comp Endocr 195:9–20. https://doi.org/10.1016/j.ygcen.2013.10.008. (PMID: 10.1016/j.ygcen.2013.10.00824505600)
Cummings ME, Rosenthal GG, Ryan MJ (2003) A private ultraviolet channel in visual communication. P Roy Soc Lond B Bio 270:897–904. https://doi.org/10.1098/rspb.2003.2334. (PMID: 10.1098/rspb.2003.2334)
Dalmolin C, Almeida DV, Figueiredo MA, Marins LF (2015) Food intake and appetite control in a GH-transgenic zebrafish. Fish Physiol Biochem 41:1131–1141. (PMID: 10.1007/s10695-015-0074-525990920)
Daniele LL, Insinna C, Chance R, Wang JH, Nikonov SS, Pugh EN Jr (2011) A mouse M-opsin monochromat: retinal cone photoreceptors have increased M-opsin expression when S-opsin is knocked out. Vision Res 51:447–458. https://doi.org/10.1016/j.visres.2010.12.017. (PMID: 10.1016/j.visres.2010.12.017212199243072795)
Deveau C, Jiao X, Suzuki SC, Krishnakumar A, Nelson RF (2020) Thyroid hormone receptor beta mutations alter photoreceptor development and function in Danio rerio (zebrafish). Plos Genet 16:e1008869. https://doi.org/10.1371/journal.pgen.1008869. (PMID: 10.1371/journal.pgen.1008869325693027332105)
Douglas RH, Partridge JC (2011) VISION | Visual Adaptations to the Deep Sea. Encyclopedia of Fish Physiology 166–182. https://doi.org/10.1016/B978-0-12-374553-8.00089-7.
Duval MG, Oel AP, Allison WT (2014) gdf6a is required for cone photoreceptor subtype differentiation and for the actions of tbx2b in determining rod versus cone photoreceptor fate. PLoS One 9:e92991. https://doi.org/10.1371/journal.pone.0092991. (PMID: 10.1371/journal.pone.0092991246818223969374)
Ebrey T, Koutalos Y (2001) Vertebrate photoreceptors. Prog Retin Eye Res 20:49–94. https://doi.org/10.1016/S1350-9462(00)00014-8. (PMID: 10.1016/S1350-9462(00)00014-811070368)
Engström K (1963) Cone types and cone arrangements in teleost retinae 1. Acta Zoologica 44:179–243. https://doi.org/10.1111/j.1463-6395.1963.tb00408.x. (PMID: 10.1111/j.1463-6395.1963.tb00408.x)
Flamarique IN (2013) Opsin switch reveals function of the ultraviolet cone in fish foraging. Proc Biol Sci 280:20122490. https://doi.org/10.1098/rspb.2012.2490. (PMID: 10.1098/rspb.2012.2490)
Flamarique IN (2016) Diminished foraging performance of a mutant zebrafish with reduced population of ultraviolet cones. Proc Biol Sci 283:20160058. https://doi.org/10.1098/rspb.2016.0058. (PMID: 10.1098/rspb.2016.0058)
Flamarique HN, Hawryshyn C (1994) Ultraviolet photoreception contributes to prey search behaviour in two species of zooplanktivorous fishes. J Exp Biol 186:187–198. https://doi.org/10.1242/jeb.186.1.187. (PMID: 10.1242/jeb.186.1.187)
Flamarique IN, Mueller G, Cheng C, Figiel C (2007) Communication using eye roll reflective signalling. P Roy Soc Lond B Bio 274:877–882. https://doi.org/10.1098/rspb.2006.0246. (PMID: 10.1098/rspb.2006.0246)
Flamarique IN, Cheng CL, Bergstrom C, Reimchen TE (2013) Pronounced heritable variation and limited phenotypic plasticity in visual pigments and opsin expression of threespine stickleback photoreceptors. J Exp Biol 216:656–667. https://doi.org/10.1242/jeb.078840. (PMID: 10.1242/jeb.07884023077162)
Flamarique IN, Fujihara R, Yazawa R, Bolstad K, Gowen B, Yoshizaki G (2021) Disrupted eye and head development in rainbow trout with reduced ultraviolet (sws1) opsin expression. J Comp Neurol 529:3013–3031. https://doi.org/10.1002/cne.25144. (PMID: 10.1002/cne.25144)
Forsell J, Ekström P, Flamarique IN, Holmqvist B (2001) Expression of pineal ultraviolet-and green-like opsins in the pineal organ and retina of teleosts. J Exp Biol 204:2517–2525. https://doi.org/10.1242/jeb.204.14.2517. (PMID: 10.1242/jeb.204.14.251711511667)
French CR, Erickson T, French DV, Pilgrim DB, Waskiewicz AJ (2009) Gdf6a is required for the initiation of dorsal–ventral retinal patterning and lens development. Dev Biol 333:37–47. https://doi.org/10.1016/j.ydbio.2009.06.018. (PMID: 10.1016/j.ydbio.2009.06.01819545559)
French CR, Stach TR, March LD, Lehmann OJ, Waskiewicz AJ (2013) Apoptotic and proliferative defects characterize ocular development in a microphthalmic BMP model. Invest Ophth vis Sci 54:4636–4647. https://doi.org/10.1167/iovs.13-11674. (PMID: 10.1167/iovs.13-11674)
Gahtan E, Tanger P, Baier H (2005) Visual prey capture in larval zebrafish is controlled by identified reticulospinal neurons downstream of the tectum. J Neurosci 25:9294–9303. https://doi.org/10.1523/JNEUROSCI.2678-05.2005. (PMID: 10.1523/JNEUROSCI.2678-05.2005162078896725764)
Gosse NJ, Baier H (2009) An essential role for Radar (Gdf6a) in inducing dorsal fate in the zebrafish retina. P Natl Acad Sci USA 106:2236–2241. https://doi.org/10.1073/pnas.0803202106. (PMID: 10.1073/pnas.0803202106)
Hárosi FI (1994) An analysis of two spectral properties of vertebrate visual pigments. Vision Res 34:1359–1367. https://doi.org/10.1016/0042-6989(94)90134-1. (PMID: 10.1016/0042-6989(94)90134-18023444)
Hárosi FI, Hashimoto Y (1983) Ultraviolet visual pigment in a vertebrate: a tetrachromatic cone system in the dace. Science 222:1021–1023. (PMID: 10.1126/science.66485146648514)
Hennig AK, Peng GH, Chen S (2008) Regulation of photoreceptor gene expression by Crx-associated transcription factor network. Brain Res 1192:114–133. https://doi.org/10.1016/j.brainres.2007.06.036. (PMID: 10.1016/j.brainres.2007.06.03617662965)
Hitchcock PF, Raymond PA (2004) The teleost retina as a model for developmental and regeneration biology. Zebrafish 1:257–271. https://doi.org/10.1089/zeb.2004.1.257. (PMID: 10.1089/zeb.2004.1.25718248236)
Humphries MM, Rancourt D, Farrar GJ, Kenna P, Hazel M, Bush RA, Sieving PA, Sheils DM, Creighton P, Erven A, Boros A, Gulya K, Capecchi MR, Humphries P (1997) Retinopathy induced in mice by targeted disruption of the rhodopsin gene. Nat Genet 15:216–219. https://doi.org/10.1038/ng0297-216. (PMID: 10.1038/ng0297-2169020854)
Isayama T, Makino C (2012) Pigment mixtures and other determinants of spectral sensitivity of vertebrate retinal photoreceptors. Photoreceptors: physiology, types and abnormalities 1–31.
Ishimaru Y, Okada S, Naito H et al (2005) Two families of candidate taste receptors in fishes. Mech Develop 122:1310–1321. https://doi.org/10.1016/j.mod.2005.07.005. (PMID: 10.1016/j.mod.2005.07.005)
Kojima D, Torii M, Fukada Y, Dowling JE (2008) Differential expression of duplicated VAL-opsin genes in the developing zebrafish. J Neurochem 104:1364–1371. https://doi.org/10.1111/j.1471-4159.2007.05093.x. (PMID: 10.1111/j.1471-4159.2007.05093.x18036148)
Labun K, Montague TG, Gagnon JA, Thyme SB, Valen E (2016) CHOPCHOP v2: a web tool for the next generation of CRISPR genome engineering. Nucleic Acids Res 44:W272–W276. https://doi.org/10.1093/nar/gkw398. (PMID: 10.1093/nar/gkw398271858944987937)
Liu DW, Lu Y, Yan HY, Zakon HH (2016) South American weakly electric fish (gymnotiformes) are long-wavelength-sensitive cone monochromats. Brain Behav Evol 88:204–212. https://doi.org/10.1159/000450746. (PMID: 10.1159/00045074627820927)
Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2 −ΔΔCT method. Methods 25:402–408. https://doi.org/10.1006/meth.2001.1262. (PMID: 10.1006/meth.2001.126211846609)
Malicki J, Pooranachandran N, Nikolaev A, Fang X, Avanesov A (2016) Analysis of the retina in the zebrafish model. Method Cell Biol 134:257–334. https://doi.org/10.1016/bs.mcb.2016.04.017. (PMID: 10.1016/bs.mcb.2016.04.017)
Margolskee RF, Dyer J, Kokrashvili Z et al (2007) T1R3 and gustducin in gut sense sugars to regulate expression of Na + -glucose cotransporter 1. P Natl Acad Sci USA 104:15075–15080. https://doi.org/10.1073/pnas.0706678104. (PMID: 10.1073/pnas.0706678104)
Marvel M, Spicer OS, Wong TT, Zmora N, Zohar Y (2018) Knockout of the Gnrh genes in zebrafish: effects on reproduction and potential compensation by reproductive and feeding-related neuropeptides. Biol Reprod 99:565–577. https://doi.org/10.1093/biolre/ioy078. (PMID: 10.1093/biolre/ioy07829635430)
Ng L, Hurley JB, Dierks B, Srinivas M, Saltó C, Vennström B, Reh TA, Forrest D (2001) A thyroid hormone receptor that is required for the development of green cone photoreceptors. Nat Genet 27:94–98. https://doi.org/10.1038/83829. (PMID: 10.1038/8382911138006)
Noel NC, Allison WT (2018) Connectivity of cone photoreceptor telodendria in the zebrafish retina. J Comp Neurol 526:609–625. https://doi.org/10.1002/cne.24354. (PMID: 10.1002/cne.2435429127712)
Noel NC, MacDonald IM, Allison WT (2021) Zebrafish models of photoreceptor dysfunction and degeneration. Biomolecules 11:78. https://doi.org/10.3390/biom11010078. (PMID: 10.3390/biom11010078334352687828047)
Ogawa Y, Shiraki T, Kojima D, Fukada Y (2015) Homeobox transcription factor Six7 governs expression of green opsin genes in zebrafish. Proc Biol Sci 282:20150659. https://doi.org/10.1098/rspb.2015.0659. (PMID: 10.1098/rspb.2015.0659261800644528509)
Ogawa Y, Shiraki T, Asano Y, Muto A, Kawakami K, Suzuki Y, Kojima D, Fukada Y (2019) Six6 and Six7 coordinately regulate expression of middle-wavelength opsins in zebrafish. Proc Natl Acad Sci USA 116:4651–4660. https://doi.org/10.1073/pnas.1812884116. (PMID: 10.1073/pnas.1812884116307655216410792)
Ogawa Y, Shiraki T, Fukada Y, Kojima D (2021) Foxq2 determines blue cone identity in zebrafish. Sci Adv 7:eabi9784. https://doi.org/10.1126/sciadv.abi9784. (PMID: 10.1126/sciadv.abi9784346137718494292)
Oike H, Nagai T, Furuyama A et al (2007) Characterization of ligands for fish taste receptors. J Neurosci 27:5584–5592. https://doi.org/10.1523/JNEUROSCI.0651-07.2007. (PMID: 10.1523/JNEUROSCI.0651-07.2007175223036672760)
Opazo R, Plaza-Parrochia F, Cardoso dos Santos GR, Carneiro GRA, Sardela VF, Romero J, Valladares L (2018) Fasting upregulates npy, agrp, and ghsr without increasing ghrelin levels in Zebrafish (Danio rerio) larvae. Front Physiol 9:1901. https://doi.org/10.3389/fphys.2018.01901. (PMID: 10.3389/fphys.2018.0190130733682)
Palacios AG, Bozinovic F, Vielma A, Arrese CA, Hunt DM, Peichl L (2010) Retinal photoreceptor arrangement, SWS1 and LWS opsin sequence, and electroretinography in the South American marsupial Thylamys elegans (Waterhouse, 1839). J Comp Neurol 518:1589–1602. https://doi.org/10.1002/cne.22292. (PMID: 10.1002/cne.2229220187149)
Renninger SL, Gesemann M, Neuhauss SC (2011) Cone arrestin confers cone vision of high temporal resolution in zebrafish larvae. Eur J Neurosci 33:658–667. https://doi.org/10.1111/j.1460-9568.2010.07574.x. (PMID: 10.1111/j.1460-9568.2010.07574.x21299656)
Roberts MR, Srinivas M, Forrest D, Escobar GM, Reh TA (2006) Making the gradient: thyroid hormone regulates cone opsin expression in the developing mouse retina. Proc Natl Acad Sci 103:6218–6223. https://doi.org/10.1073/pnas.0509981103. (PMID: 10.1073/pnas.0509981103166068431458858)
Ronnestad I, Gomes AS, Murashita K, Angotzi R, Jönsson E, Volkoff H (2017) Appetite-controlling endocrine systems in teleosts. Front Endocrinol (lausanne) 8:73. https://doi.org/10.3389/fendo.2017.00073. (PMID: 10.3389/fendo.2017.0007328458653)
Saade CJ, Alvarez-Delfin K, Fadool JM (2013) Rod photoreceptors protect from cone degeneration-induced retinal remodeling and restore visual responses in zebrafish. J Neurosci 33:1804–1814. https://doi.org/10.1523/JNEUROSCI.2910-12.2013. (PMID: 10.1523/JNEUROSCI.2910-12.2013233652203711385)
Semmelhack JL, Donovan JC, Thiele TR, Kuehn E, Laurell E, Baier H (2014) A dedicated visual pathway for prey detection in larval zebrafish. Elife 3:e04878. (PMID: 10.7554/eLife.04878254901544281881)
Shi C, Lu Y, Zhai G, Huang JF, Shang GH, Lou QY, Li DL, Jin X, He JY, Du ZY, Gui JF, Yin Z (2020) Hyperandrogenism in POMCa-deficient zebrafish enhances somatic growth without increasing adiposity. J Mol Cell Biol 12:291–304. https://doi.org/10.1093/jmcb/mjz053. (PMID: 10.1093/jmcb/mjz05331237951)
Shimada Y, Hirano M, Nishimura Y, Tanaka T (2012) A high-throughput fluorescence-based assay system for appetite-regulating gene and drug screening. PLoS One 7:e52549. https://doi.org/10.1371/journal.pone.0052549. (PMID: 10.1371/journal.pone.0052549233007053530442)
Siebeck UE, Parker AN, Sprenger D, Mäthger LM, Wallis G (2010) A species of reef fish that uses ultraviolet patterns for covert face recognition. Curr Biol 20:407–410. https://doi.org/10.1016/j.cub.2009.12.047. (PMID: 10.1016/j.cub.2009.12.04720188557)
Spady TC, Parry WL, Robinson PR, Hunt DM, Bowmaker JK, Carleton KL (2006) Evolution of the cichlid visual palette through ontogenetic subfunctionalization of the opsin gene arrays. Mol Biol Evol 23:1538–1547. https://doi.org/10.1093/molbev/msl014. (PMID: 10.1093/molbev/msl01416720697)
Stahl Y, Simon R (2010) mRNA detection by whole mount in situ hybridization (WISH) or sectioned tissue in situ hybridization (SISH) in Arabidopsis, Plant Developmental Biology. Springer, 239–251.
Suliman T, Flamarique NI (2014) Visual pigments and opsin expression in the juveniles of three species of fish (rainbow trout, zebrafish, and killifish) following prolonged exposure to thyroid hormone or retinoic acid. J Comp Neurol 522:98–117. https://doi.org/10.1002/cne.23391. (PMID: 10.1002/cne.2339123818308)
Swaroop A, Kim D, Forrest D (2010) Transcriptional regulation of photoreceptor development and homeostasis in the mammalian retina. Nat Rev Neurosci 11:563–576. https://doi.org/10.1038/nrn2880. (PMID: 10.1038/nrn288020648062)
Volkov LI, Kim-Han JS, Saunders LM, Poria D, Corb JC (2020) Thyroid hormone receptors mediate two distinct mechanisms of long-wavelength vision. Proc Natl Acad Sci USA 117:15262–15269. https://doi.org/10.1073/pnas.1920086117. (PMID: 10.1073/pnas.1920086117325410227334509)
Wan J, Stenkamp DL (2000) Cone mosaic development in the goldfish retina is independent of rod neurogenesis and differentiation. J Comp Neurol 423:227–242. https://doi.org/10.1002/1096-9861(20000724)423:2%3c227::AID-CNE4%3e3.0.CO;2-Z. (PMID: 10.1002/1096-9861(20000724)423:2<227::AID-CNE4>3.0.CO;2-Z10867656)
Yokoyama S (2008) Evolution of dim-light and color vision pigments. Annu Rev Genomics Hum Genet 9:259–282. https://doi.org/10.1146/annurev.genom.9.081307.164228. (PMID: 10.1146/annurev.genom.9.081307.16422818544031)
Yoshimatsu T, Schroder C, Nevala NE, Berens P, Baden T (2020) Fovea-like photoreceptor specializations underlie single UV cone driven prey-capture behavior in zebrafish. Neuron 107:320-337 e6. https://doi.org/10.1016/j.neuron.2020.04.021. (PMID: 10.1016/j.neuron.2020.04.021324730947383236)
Zheng B, Li S, Liu Y, Li Y, Chen HP, Tang HP, Liu XC, Lin HR, ZhangY CCH (2017) Spexin suppress food intake in zebrafish: evidence from gene knockout study. Sci Rep-UK 7:1–9.
Zimmermann MJ, Nevala NE, Takeshi Y, Daniel O, Dan-Eric N, Philipp B, Tom B (2018) Zebrafish differentially process color across visual space to match natural scenes. Curr Biol 28. https://doi.org/10.1016/j.cub.2018.04.075.
معلومات مُعتمدة: 2018YFD0900400 National Key R&D Program of China; 31972809 National Natural Science Foundation of China; 32202903 National Natural Science Foundation of China
فهرسة مساهمة: Keywords: Cone opsin; Food intake; Zebrafish; sws1
المشرفين على المادة: 0 (Cone Opsins)
0 (Opsins)
تواريخ الأحداث: Date Created: 20230726 Date Completed: 20231026 Latest Revision: 20231026
رمز التحديث: 20231215
DOI: 10.1007/s10695-023-01213-5
PMID: 37495865
قاعدة البيانات: MEDLINE
الوصف
تدمد:1573-5168
DOI:10.1007/s10695-023-01213-5