SynLight: a dicistronic strategy for simultaneous active zone and cell labeling in the Drosophila nervous system.

التفاصيل البيبلوغرافية
العنوان: SynLight: a dicistronic strategy for simultaneous active zone and cell labeling in the Drosophila nervous system.
المؤلفون: Aimino MA; Department of Neuroscience, Vickie and Jack Farber Institute of Neuroscience, Thomas Jefferson University, Bluemle Life Sciences Building, Philadelphia, PA 19107., Humenik J; Department of Neuroscience, Vickie and Jack Farber Institute of Neuroscience, Thomas Jefferson University, Bluemle Life Sciences Building, Philadelphia, PA 19107., Parisi MJ; Department of Neuroscience, Vickie and Jack Farber Institute of Neuroscience, Thomas Jefferson University, Bluemle Life Sciences Building, Philadelphia, PA 19107., Duhart JC; Department of Neuroscience, Vickie and Jack Farber Institute of Neuroscience, Thomas Jefferson University, Bluemle Life Sciences Building, Philadelphia, PA 19107., Mosca TJ; Department of Neuroscience, Vickie and Jack Farber Institute of Neuroscience, Thomas Jefferson University, Bluemle Life Sciences Building, Philadelphia, PA 19107.
المصدر: BioRxiv : the preprint server for biology [bioRxiv] 2023 Jul 17. Date of Electronic Publication: 2023 Jul 17.
نوع المنشور: Preprint
اللغة: English
بيانات الدورية: Country of Publication: United States NLM ID: 101680187 Publication Model: Electronic Cited Medium: Internet NLM ISO Abbreviation: bioRxiv Subsets: PubMed not MEDLINE
مستخلص: At synapses, chemical neurotransmission mediates the exchange of information between neurons, leading to complex movement behaviors and stimulus processing. The immense number and variety of neurons within the nervous system makes discerning individual neuron populations difficult, necessitating the development of advanced neuronal labeling techniques. In Drosophila , Bruchpilot-Short and mCD8-GFP, which label presynaptic active zones and neuronal membranes, respectively, have been widely used to study synapse development and organization. This labeling is often achieved via expression of two independent constructs by a single binary expression system, but expression can weaken when multiple transgenes are expressed by a single driver. Ensuring adequate expression of each transgene is essential to enable more complex experiments; as such, work has sought to circumvent these drawbacks by developing methods that encode multiple proteins from a single transcript. Self-cleaving peptides, specifically 2A peptides, have emerged as effective sequences for accomplishing this task. We leveraged 2A ribosomal skipping peptides to engineer a construct that produces both Bruchpilot-Short and mCD8-GFP from the same mRNA, which we named SynLight. Using SynLight, we visualized the putative synaptic active zones and membranes of multiple classes of olfactory, visual, and motor neurons and observed correct separation of signal, confirming that both proteins are being generated separately. Furthermore, we demonstrate proof-of-principle by quantifying synaptic puncta number and neurite volume in olfactory neurons and finding no difference between the synapse densities of neurons expressing SynLight or neurons expressing both transgenes separately. At the neuromuscular junction, we determined that synaptic puncta number labeled by SynLight was comparable to endogenous puncta labeled by antibody staining. Overall, SynLight is a versatile tool for examining synapse density in any nervous system region of interest and allows new questions to be answered about synaptic development and organization.
التعليقات: Update in: G3 (Bethesda). 2023 Sep 27;:. (PMID: 37757863)
References: Annu Rev Vis Sci. 2018 Sep 15;4:143-163. (PMID: 29949723)
Cell Rep. 2018 May 1;23(5):1259-1274. (PMID: 29719243)
Genes Genet Syst. 2023 Apr 18;97(6):297-309. (PMID: 36878557)
Cell. 2000 Jul 21;102(2):147-59. (PMID: 10943836)
G3 (Bethesda). 2022 Mar 4;12(3):. (PMID: 35100385)
J Comp Neurol. 2009 Dec 20;517(6):808-24. (PMID: 19844895)
Proc Natl Acad Sci U S A. 1982 Apr;79(8):2700-4. (PMID: 6806816)
Neural Dev. 2020 Aug 2;15(1):11. (PMID: 32741370)
Annu Rev Neurosci. 2005;28:251-74. (PMID: 16022596)
PLoS One. 2014 Jun 19;9(6):e100637. (PMID: 24945148)
Biotechniques. 2007 Feb;42(2):164, 166. (PMID: 17373479)
Cell Rep. 2012 Oct 25;2(4):991-1001. (PMID: 23063364)
Curr Opin Neurobiol. 2011 Feb;21(1):132-43. (PMID: 20832286)
Neuron. 1999 Mar;22(3):451-61. (PMID: 10197526)
PLoS One. 2011;6(4):e18556. (PMID: 21602908)
Genes Genet Syst. 2021 Feb 11;95(5):235-247. (PMID: 33298662)
Science. 2006 Dec 15;314(5806):1747-51. (PMID: 17138868)
Genetics. 2004 Apr;166(4):1775-82. (PMID: 15126397)
G3 (Bethesda). 2019 Mar 7;9(3):737-748. (PMID: 30635441)
Neurosci Res. 2018 Feb;127:14-24. (PMID: 29258853)
Proc Natl Acad Sci U S A. 2002 Oct 29;99(22):14464-9. (PMID: 12391317)
Dev Cell. 2019 Aug 19;50(4):447-461.e8. (PMID: 31353313)
Neuron. 2014 Feb 05;81(3):603-615. (PMID: 24507194)
Genes Cells. 2019 Jul;24(7):496-510. (PMID: 31124270)
Curr Biol. 2010 Nov 9;20(21):1938-44. (PMID: 20951043)
Nucleic Acids Res. 1991 Aug 25;19(16):4485-90. (PMID: 1653417)
Nat Methods. 2015 Mar;12(3):219-22, 5 p following 222. (PMID: 25581800)
Nature. 2007 Jul 12;448(7150):151-6. (PMID: 17625558)
Neuron. 2011 Oct 20;72(2):202-30. (PMID: 22017985)
Nat Methods. 2011 Sep;8(9):737-43. (PMID: 21985007)
Proc Natl Acad Sci U S A. 2015 Nov 3;112(44):13711-6. (PMID: 26483464)
Elife. 2020 Sep 07;9:. (PMID: 32880371)
Biosystems. 2018 Feb;164:94-101. (PMID: 29054468)
Neuron. 2006 Mar 16;49(6):833-44. (PMID: 16543132)
Mol Cell Biol. 1997 Mar;17(3):1714-21. (PMID: 9032298)
J Comp Neurol. 2008 May 1;508(1):131-52. (PMID: 18302156)
Neuron. 2016 Jan 20;89(2):248-68. (PMID: 26796689)
J Neurosci. 2009 Jul 1;29(26):8595-603. (PMID: 19571150)
Cell Rep Methods. 2023 May 11;3(5):100477. (PMID: 37323572)
J Neurogenet. 2000 Jan;13(4):233-55. (PMID: 10858822)
J Neurosci. 2008 Apr 2;28(14):3781-9. (PMID: 18385336)
Neural Plast. 2016;2016:8607038. (PMID: 27006834)
Biotechnol Genet Eng Rev. 2010;26:223-60. (PMID: 21415883)
Neuron. 2012 Jul 12;75(1):11-25. (PMID: 22794257)
Neuron. 1994 Sep;13(3):507-23. (PMID: 7917288)
Wiley Interdiscip Rev Dev Biol. 2013 Sep-Oct;2(5):647-70. (PMID: 24014452)
Neural Dev. 2018 May 1;13(1):7. (PMID: 29712572)
Neuron. 2004 Apr 8;42(1):77-88. (PMID: 15066266)
Elife. 2020 Oct 20;9:. (PMID: 33079061)
Genetics. 2012 Mar;190(3):1139-44. (PMID: 22209908)
Nat Protoc. 2006;1(4):2110-5. (PMID: 17487202)
J Cell Biol. 2002 Aug 5;158(3):577-90. (PMID: 12163476)
Cell. 2015 Dec 17;163(7):1770-1782. (PMID: 26687361)
Curr Opin Neurobiol. 2007 Feb;17(1):35-42. (PMID: 17229568)
Elife. 2014 Oct 13;3:e03726. (PMID: 25310239)
Neuron. 2014 Jan 22;81(2):280-93. (PMID: 24462095)
Cell. 2010 Apr 30;141(3):536-48. (PMID: 20434990)
Mol Ther. 2010 Jan;18(1):80-6. (PMID: 19904234)
Cell. 2006 Apr 7;125(1):143-60. (PMID: 16615896)
J Neurosci Methods. 2022 Apr 15;372:109540. (PMID: 35219770)
Prog Neurobiol. 2011 Nov;95(3):275-300. (PMID: 21907759)
PLoS One. 2013 Dec 26;8(12):e83732. (PMID: 24386266)
Development. 1999 Sep;126(18):4065-76. (PMID: 10457015)
J Neurosci. 2017 Aug 2;37(31):7318-7331. (PMID: 28659283)
Dev Neurobiol. 2009 Mar;69(4):221-34. (PMID: 19160442)
Genes Dev. 2021 May 1;35(9-10):677-691. (PMID: 33888564)
J Virol. 2005 Aug;79(15):9933-44. (PMID: 16014954)
Genesis. 2002 Sep-Oct;34(1-2):142-5. (PMID: 12324970)
Genetics. 2022 Jul 4;221(3):. (PMID: 35652253)
Nat Neurosci. 2010 Apr;13(4):439-49. (PMID: 20139975)
Neuron. 2015 May 6;86(3):711-25. (PMID: 25892303)
Cell. 2007 Mar 23;128(6):1187-203. (PMID: 17382886)
Development. 2004 Jan;131(1):117-30. (PMID: 14645123)
Neuron. 2002 Aug 29;35(5):827-41. (PMID: 12372279)
Cell. 2005 Jun 3;121(5):795-807. (PMID: 15935765)
Elife. 2014 Nov 13;3:. (PMID: 25392983)
Elife. 2018 Mar 22;7:. (PMID: 29565247)
Nature. 2004 Oct 14;431(7010):854-9. (PMID: 15372051)
J Neurosci. 2011 Jun 29;31(26):9696-707. (PMID: 21715635)
Science. 2011 Dec 16;334(6062):1565-9. (PMID: 22174254)
Nature. 2001 Nov 8;414(6860):204-8. (PMID: 11719930)
Science. 2006 May 19;312(5776):1051-4. (PMID: 16614170)
BMC Biotechnol. 2004 Jul 27;4:16. (PMID: 15279677)
J Neurosci. 2020 Aug 12;40(33):6309-6327. (PMID: 32641403)
J Comp Neurol. 1999 Mar 22;405(4):543-52. (PMID: 10098944)
Nature. 2013 Aug 8;500(7461):175-81. (PMID: 23925240)
Curr Opin Biotechnol. 1999 Oct;10(5):458-64. (PMID: 10508627)
Proc Natl Acad Sci U S A. 2010 Nov 23;107(47):20553-8. (PMID: 21059961)
Dev Cell. 2022 Jul 11;57(13):1643-1660.e7. (PMID: 35654038)
Annu Rev Neurosci. 2013 Jul 8;36:217-41. (PMID: 23841839)
Semin Cell Dev Biol. 2006 Feb;17(1):3-11. (PMID: 16356739)
Development. 1993 Jun;118(2):401-15. (PMID: 8223268)
Genes Genet Syst. 2020 Aug 27;95(3):101-110. (PMID: 32493879)
Nat Neurosci. 2010 Aug;13(8):935-43. (PMID: 20601947)
J Neurosci. 2009 Jul 8;29(27):8621-9. (PMID: 19587267)
Cell Rep. 2020 Jan 7;30(1):284-297.e5. (PMID: 31914394)
J Cell Biol. 2009 Jul 13;186(1):129-45. (PMID: 19596851)
Elife. 2017 Jun 13;6:. (PMID: 28606304)
J Neurosci. 2023 Jan 4;43(1):28-55. (PMID: 36446587)
Sci Rep. 2011;1:75. (PMID: 22355594)
Curr Opin Neurobiol. 2012 Jun;22(3):522-9. (PMID: 22409856)
Neuron. 2016 Mar 16;89(6):1131-1156. (PMID: 26985722)
Dev Biol. 2005 Dec 1;288(1):126-38. (PMID: 16223476)
Neuron. 2013 Sep 4;79(5):917-31. (PMID: 24012005)
EMBO J. 1990 Jun;9(6):1969-77. (PMID: 2189727)
Dev Biol. 2017 Dec 1;432(1):43-52. (PMID: 27965053)
معلومات مُعتمدة: P40 OD018537 United States OD NIH HHS; R00 DC013059 United States DC NIDCD NIH HHS; R01 NS110907 United States NS NINDS NIH HHS
تواريخ الأحداث: Date Created: 20230728 Latest Revision: 20231104
رمز التحديث: 20231104
مُعرف محوري في PubMed: PMC10370149
DOI: 10.1101/2023.07.17.549367
PMID: 37502901
قاعدة البيانات: MEDLINE
الوصف
DOI:10.1101/2023.07.17.549367