دورية أكاديمية

Omega-3 Polyunsaturated Fatty Acids Alleviate Intestinal Barrier Dysfunction in Obstructive Jaundice Rats.

التفاصيل البيبلوغرافية
العنوان: Omega-3 Polyunsaturated Fatty Acids Alleviate Intestinal Barrier Dysfunction in Obstructive Jaundice Rats.
المؤلفون: Zhang C; Department of General Surgery, Binzhou Medical University Hospital, No.661, Huanghe 2nd Road, Binzhou, 256603, Shandong, China., Yin Z; Department of General Surgery, Binzhou Medical University Hospital, No.661, Huanghe 2nd Road, Binzhou, 256603, Shandong, China., Hu F; Clinical Medicine Laboratory, Binzhou Medical University Hospital, Binzhou, 256603, Shandong, China., Lin X; Department of General Surgery, Binzhou Medical University Hospital, No.661, Huanghe 2nd Road, Binzhou, 256603, Shandong, China., Guan Q; Department of General Surgery, Binzhou Medical University Hospital, No.661, Huanghe 2nd Road, Binzhou, 256603, Shandong, China., Zhang F; Department of General Surgery, Binzhou Medical University Hospital, No.661, Huanghe 2nd Road, Binzhou, 256603, Shandong, China., Zhang X; Department of General Surgery, Binzhou Medical University Hospital, No.661, Huanghe 2nd Road, Binzhou, 256603, Shandong, China. zhangxingyuann@hotmail.com.
المصدر: Molecular biotechnology [Mol Biotechnol] 2024 Aug; Vol. 66 (8), pp. 1954-1960. Date of Electronic Publication: 2023 Jul 28.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Springer Country of Publication: Switzerland NLM ID: 9423533 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1559-0305 (Electronic) Linking ISSN: 10736085 NLM ISO Abbreviation: Mol Biotechnol Subsets: MEDLINE
أسماء مطبوعة: Publication: [Cham] : Springer
Original Publication: Totowa, NJ : Humana Press, c1994-
مواضيع طبية MeSH: Jaundice, Obstructive*/metabolism , Jaundice, Obstructive*/drug therapy , Jaundice, Obstructive*/pathology , Fatty Acids, Omega-3*/pharmacology , Intestinal Mucosa*/metabolism , Intestinal Mucosa*/drug effects , Intestinal Mucosa*/pathology , Apoptosis*/drug effects , Tight Junction Proteins*/metabolism , Tight Junction Proteins*/genetics, Animals ; Rats ; Male ; Rats, Sprague-Dawley ; Disease Models, Animal ; Tight Junctions/metabolism ; Tight Junctions/drug effects ; Cytokines/metabolism ; Intestines/drug effects ; Intestines/pathology
مستخلص: Obstructive jaundice (OJ) can cause multiple pathophysiological consequences including intestinal barrier dysfunction. Omega-3 has been indicated to have a promising therapeutic effect on OJ. This study aimed to further investigate the functions of omega-3 on OJ-induced intestinal injury. A rat OJ model was established by bile duct ligation with or without omega-3 administration. ELISA was utilized for measuring serum levels of inflammatory cytokines. Hematoxylin-eosin staining and TUNEL staining were employed for detecting the morphological changes and cell apoptosis in rat intestine. Western blotting was utilized for evaluating expression of tight junction proteins in the intestinal tissues. Omgea-3 offset the reduction in body weight of OJ rats. Omega-3 alleviated inflammatory response, pathological damages and cell apoptosis in the intestine of OJ rats. Additionally, omega-3 enhanced levels of tight junction proteins in the intestinal tissues of OJ rats. Omega-3 ameliorates OJ-triggered impairment of intestinal barrier function in rats.
(© 2023. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.)
References: Pavlidis, E. T., & Pavlidis, T. E. (2018). Pathophysiological consequences of obstructive jaundice and perioperative management. Hepatobiliary & Pancreatic Diseases International, 17(1), 17–21. (PMID: 10.1016/j.hbpd.2018.01.008)
Zhang, X., et al. (2022). Biliary drainage reduces intestinal barrier damage in obstructive jaundice by regulating autophagy. Contrast Media & Molecular Imaging, 2022, 3301330. (PMID: 10.1155/2022/3301330)
Fukui, H. (2016). Increased intestinal permeability and decreased barrier function: Does it really influence the risk of inflammation? Inflammatory Intestinal Diseases, 1(3), 135–145. (PMID: 10.1159/000447252299226695988153)
Yang, R., et al. (2018). Bile and circulating HMGB1 contributes to systemic inflammation in obstructive jaundice. Journal of Surgical Research, 228, 14–19. (PMID: 10.1016/j.jss.2018.02.04929907203)
Yan, M., et al. (2022). Effects of intestinal FXR-Related molecules on intestinal mucosal barriers in biliary tract obstruction. Frontiers In Pharmacology, 13, 906452. (PMID: 10.3389/fphar.2022.906452357700789234329)
Chen, Z., et al. (2022). The function of omega-3 polyunsaturated fatty acids in response to cadmium exposure. Frontiers in Immunology, 13, 1023999. (PMID: 10.3389/fimmu.2022.1023999362488389558127)
Tabbaa, M., et al. (2013). Docosahexaenoic acid, inflammation, and bacterial dysbiosis in relation to periodontal disease, inflammatory bowel disease, and the metabolic syndrome. Nutrients, 5(8), 3299–3310. (PMID: 10.3390/nu5083299239661103775255)
Mukaro, V. R., et al. (2008). Leukocyte numbers and function in subjects eating n-3 enriched foods: Selective depression of natural killer cell levels. Arthritis Research & Therapy, 10(3), R57. (PMID: 10.1186/ar2426)
Shahidi, F., & Ambigaipalan, P. (2018). Omega-3 polyunsaturated fatty acids and their health benefits. Annual Review of Food Science Technology, 9, 345–381. (PMID: 10.1146/annurev-food-111317-09585029350557)
Turyk, M. E., et al. (2012). Risks and benefits of consumption of Great Lakes fish. Environmental Health Perspectives, 120(1), 11–18. (PMID: 10.1289/ehp.100339621947562)
Azuma, M. M., et al. (2022). The use of omega-3 fatty acids in the treatment of oral diseases. Oral Diseases, 28(2), 264–274. (PMID: 10.1111/odi.1366733022782)
Li, X., et al. (2019). Therapeutic potential of ω-3 polyunsaturated fatty acids in human autoimmune diseases. Frontiers in Immunology, 10, 2241. (PMID: 10.3389/fimmu.2019.02241316118736776881)
Chen, C. C., et al. (2010). Reduced brain content of arachidonic acid and docosahexaenoic acid is related to the severity of liver fibrosis. Digestive Diseases and Sciences, 55(10), 2831–2837. (PMID: 10.1007/s10620-009-1120-x20101460)
Costantini, L., et al. (2017). Impact of Omega-3 fatty acids on the gut microbiota. International Journal of Molecular Sciences, 18(12), 2645. (PMID: 10.3390/ijms18122645292155895751248)
Zhang, C. X., et al. (2021). Effect and mechanism of omega-3 polyunsaturated fatty acids on intestinal injury in rats with obstructive jaundice. European Review for Medical and Pharmacological Sciences, 25(19), 6077–6092. (PMID: 34661268)
Wang, C., et al. (2021). The roles of the glucagon-like peptide-2 and the serum TGF-β1 levels in the intestinal barrier and immune functions in rats with obstructive jaundice. American Journal of Translational Research, 13(9), 10449–10458. (PMID: 346507148506993)
Parada, B. (2013). Omega-3 fatty acids inhibit tumor growth in a rat model of bladder cancer. Biomed Research International, 2013,. (PMID: 10.1155/2013/368178238650493705844)
Kul, M., et al. (2020). The effects of omega-3 fatty acids on the newborn rat hyperoxic lung injury. The Journal of Maternal-Fetal & Neonatal Medicine, 33(14), 2434–2440. (PMID: 10.1080/14767058.2018.1554042)
Xu, J., et al. (2018). Thymoquinone reduces cardiac damage caused by hypercholesterolemia in apolipoprotein E-deficient mice. Lipids in Health and Disease, 17(1), 173. (PMID: 10.1186/s12944-018-0829-y300492806062953)
Li, B., et al. (2021). Luteolin alleviates inflammation and modulates gut microbiota in ulcerative colitis rats. Life Sciences, 269, 119008. (PMID: 10.1016/j.lfs.2020.11900833434535)
Wang, L., & Yu, W. F. (2014). Obstructive jaundice and perioperative management. Acta Anaesthesiologica Taiwanica, 52(1), 22–29. (PMID: 10.1016/j.aat.2014.03.00224999215)
Tian, X., Zhang, Z., & Li, W. (2022). Expression of TLR2 and TLR5 in distal ileum of mice with obstructive jaundice and their role in intestinal mucosal injury. Archives of Medical Science, 18(1), 237–250. (PMID: 35154543)
Wu, Y., et al. (2019). The role of autophagy in maintaining intestinal mucosal barrier. Journal of Cellular Physiology, 234(11), 19406–19419. (PMID: 10.1002/jcp.2872231020664)
Jones, C., et al. (2012). The use of antiendotoxin peptides in obstructive jaundice endotoxemia. European Journal of Gastroenterology and Hepatology, 24(3), 248–254. (PMID: 10.1097/MEG.0b013e32834dfb8c22246330)
Kurniawan, J., et al. (2016). Mortality-related factors in patients with malignant obstructive jaundice. Acta Medica Indonesiana, 48(4), 282–288. (PMID: 28143989)
Elagizi, A., et al. (2021). An update on Omega-3 polyunsaturated fatty acids and Cardiovascular Health. Nutrients, 13(1), 204. (PMID: 10.3390/nu13010204334455347827286)
Altug, E., et al. (2013). Effect of ginger extract on liver damage in experimental obstructive jaundice produced by main bile duct ligation. Acta Chirurgica Belgica, 113(1), 8–13. (PMID: 10.1080/00015458.2013.1168087723550462)
Aoki, H., et al. (2016). Murine model of long-term obstructive jaundice. Journal of Surgical Research, 206(1), 118–125. (PMID: 10.1016/j.jss.2016.07.02027916350)
Bae, E. J., et al. (2022). TNF-α promotes α-synuclein propagation through stimulation of senescence-associated lysosomal exocytosis. Experimental & Molecular Medicine, 54(6), 788–800. (PMID: 10.1038/s12276-022-00789-x)
Wang, Y., et al. (2020). The role of IL-1β and TNF-α in intervertebral disc degeneration. Biomedicine & Pharmacotherapy, 131, 110660. (PMID: 10.1016/j.biopha.2020.110660)
Rzeszotarska, E., et al. (2022). IL-1β, IL-10 and TNF-α polymorphisms may affect systemic lupus erythematosus risk and phenotype. Clinical And Experimental Rheumatology, 40(9), 1708–1717. (PMID: 35084314)
Troesch, B., et al. (2020). Expert Opinion on benefits of long-chain Omega-3 fatty acids (DHA and EPA) in Aging and Clinical Nutrition. Nutrients, 12(9), 2555. (PMID: 10.3390/nu12092555328469007551800)
Suzuki, T. (2020). Regulation of the intestinal barrier by nutrients: The role of tight junctions. Animal Science Journal, 91(1), e13357. (PMID: 10.1111/asj.1335732219956)
Buckley, A., & Turner, J. R. (2018). Cell Biology of tight Junction Barrier Regulation and Mucosal Disease. Cold Spring Harbor Perspectives in Biology, 10(1), a029314. (PMID: 10.1101/cshperspect.a029314285070215749156)
Günther, C., et al. (2013). Apoptosis, necrosis and necroptosis: cell death regulation in the intestinal epithelium. Gut, 62(7), 1062–1071. (PMID: 10.1136/gutjnl-2011-30136422689519)
Zhou, Y. K., et al. (2012). Effects of Lactobacillus plantarum on gut barrier function in experimental obstructive jaundice. World Journal of Gastroenterology, 18(30), 3977–3991. (PMID: 10.3748/wjg.v18.i30.3977229125483419994)
فهرسة مساهمة: Keywords: Inflammation; Intestinal barrier; Obstructive jaundice; Omega-3
المشرفين على المادة: 0 (Fatty Acids, Omega-3)
0 (Tight Junction Proteins)
0 (Cytokines)
تواريخ الأحداث: Date Created: 20230728 Date Completed: 20240728 Latest Revision: 20240728
رمز التحديث: 20240728
DOI: 10.1007/s12033-023-00829-5
PMID: 37507597
قاعدة البيانات: MEDLINE
الوصف
تدمد:1559-0305
DOI:10.1007/s12033-023-00829-5