دورية أكاديمية

Eye movements during motor imagery and execution reveal different visuomotor control strategies in manual interception.

التفاصيل البيبلوغرافية
العنوان: Eye movements during motor imagery and execution reveal different visuomotor control strategies in manual interception.
المؤلفون: D'Aquino A; Neurocognition and Action Biomechanics Group, Faculty of Psychology and Sports Science, Bielefeld University, Bielefeld, Germany.; Center for Cognitive Interaction Technology (CITEC), Bielefeld University, Bielefeld, Germany., Frank C; Institute for Sport and Movement Science, Osnabrück University, Osnabrück, Germany., Hagan JE Jr; Neurocognition and Action Biomechanics Group, Faculty of Psychology and Sports Science, Bielefeld University, Bielefeld, Germany.; Center for Cognitive Interaction Technology (CITEC), Bielefeld University, Bielefeld, Germany., Schack T; Neurocognition and Action Biomechanics Group, Faculty of Psychology and Sports Science, Bielefeld University, Bielefeld, Germany.; Center for Cognitive Interaction Technology (CITEC), Bielefeld University, Bielefeld, Germany.; Research Institute for Cognition and Robotics (CoR-Lab), Bielefeld University, Bielefeld, Germany.
المصدر: Psychophysiology [Psychophysiology] 2023 Dec; Vol. 60 (12), pp. e14401. Date of Electronic Publication: 2023 Jul 29.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Blackwell Country of Publication: United States NLM ID: 0142657 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1540-5958 (Electronic) Linking ISSN: 00485772 NLM ISO Abbreviation: Psychophysiology Subsets: MEDLINE
أسماء مطبوعة: Publication: Malden, MA : Blackwell
Original Publication: Baltimore, Williams & Wilkins.
مواضيع طبية MeSH: Eye Movements* , Pursuit, Smooth*, Humans ; Saccades ; Reaction Time ; Imagery, Psychotherapy ; Psychomotor Performance/physiology
مستخلص: Previous research has investigated the degree of congruency in gaze metrics between action execution (AE) and motor imagery (MI) for similar manual tasks. Although eye movement dynamics seem to be limited to relatively simple actions toward static objects, there is little evidence of how gaze parameters change during imagery as a function of more dynamic spatial and temporal task demands. This study examined the similarities and differences in eye movements during AE and MI for an interception task. Twenty-four students were asked to either mentally simulate or physically intercept a moving target on a computer display. Smooth pursuit, saccades, and response time were compared between the two conditions. The results show that MI was characterized by higher smooth pursuit gain and duration while no meaningful differences were found in the other parameters. The findings indicate that eye movements during imagery are not simply a duplicate of what happens during actual performance. Instead, eye movements appear to vary as a function of the interaction between visuomotor control strategies and task demands.
(© 2023 The Authors. Psychophysiology published by Wiley Periodicals LLC on behalf of Society for Psychophysiological Research.)
References: Bach, P., Frank, C., & Kunde, W. (2022). Why motor imagery is not really motoric: Towards a re-conceptualization in terms of effect-based action control. Psychological Research. https://doi.org/10.1007/s00426-022-01773-w.
Bennett, S. J., Baures, R., Hecht, H., & Benguigui, N. (2010). Ocular pursuit and the estimation of time-to-contact with accelerating objects in prediction motion are controlled independently based on first-order estimates. Experimental Brain Research, 202(2), 327-339. https://doi.org/10.1007/s00221-009-2139-0.
Binsted, G., Chua, R., Helsen, W., & Elliott, D. (2001). Eye-hand coordination in goal-directed aiming. Human Movement Science, 20(4-5), 563-585. https://doi.org/10.1016/S0167-9457(01)00068-9.
Borst, G., & Kosslyn, S. M. (2008). Visual mental imagery and visual perception: Structural equivalence revealed by scanning processes. Memory & Cognition, 36(4), 849-862. https://doi.org/10.3758/mc.36.4.849.
Bosco, G., Delle Monache, S., & Lacquaniti, F. (2012). Catching what we can't see: Manual interception of occluded fly-ball trajectories. PLoS ONE, 7(11), e49381. https://doi.org/10.1371/journal.pone.0049381.
Brandt, S. A., & Stark, L. W. (1997). Spontaneous eye movements during visual imagery reflect the content of the visual scene. Journal of Cognitive Neuroscience, 9(1), 27-38. https://doi.org/10.1162/jocn.1997.9.1.27.
Brenner, E., & Smeets, J. (2018). Continuously updating one's predictions underlies successful interception. Journal of Neurophysiology, 120(6), 3257-3274. https://doi.org/10.1152/jn.00517.2018.
Brenner, E., & Smeets, J. B. J. (2009). Sources of variability in interceptive movements. Experimental Brain Research, 195(1), 117-133. https://doi.org/10.1007/s00221-009-1757-x.
Brenner, E., & Smeets, J. B. J. (2011). Continuous visual control of interception. Human Movement Science, 30(3), 475-494. https://doi.org/10.1016/j.humov.2010.12.007.
Brouwer, A. M., & Knill, D. C. (2007). The role of memory in visually guided reaching. Journal of Vision, 7(5), 1-12. https://doi.org/10.1167/7.5.6.
Brouwer, A. M., Middelburg, T., Smeets, J. B., & Brenner, E. (2003). Hitting moving targets: A dissociation between the use of the target's speed and direction of motion. Experimental Brain Research, 152(3), 368-375. https://doi.org/10.1007/s00221-003-1556-8.
Caeyenberghs, K., Wilson, P. H., Van Roon, D., Swinnen, S. P., & Smits-Engelsman, B. C. M. (2009). Increasing convergence between imagined and executed movement across development: Evidence for the emergence of movement representations. Developmental Science, 12(3), 474-483. https://doi.org/10.1111/j.1467-7687.2008.00803.x.
Causer, J., McCormick, S. A., & Holmes, P. S. (2013). Congruency of gaze metrics in action, imagery and action observation. Frontiers in Human Neuroscience, 7, 604. https://doi.org/10.3389/fnhum.2013.00604.
Cesqui, B., Mezzetti, M., Lacquaniti, F., & D'Avella, A. (2015). Gaze behavior in one-handed catching and its relation with interceptive performance: What the eyes can't tell. PLoS ONE, 10(3), e0119445. https://doi.org/10.1371/journal.pone.0119445.
Cohen, J. W. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Lawrence Erlbaum Associates.
Danion, F. R., & Flanagan, J. R. (2018). Different gaze strategies during eye versus hand tracking of a moving target. Scientific Reports, 8(1), 10059. https://doi.org/10.1038/s41598-018-28434-6.
D'Aquino, A., Frank, C., Hagan, J. E., Jr., & Schack, T. (2022). Imagining interceptions: Eye movements as an online indicator of covert motor processes during motor imagery. Frontiers in Neuroscience, 16, 1-15. https://doi.org/10.3389/fnins.2022.940772.
De la Malla, C., Smeets, J., & Brenner, E. (2017). Potential systematic interception errors are avoided when tracking the target with one's eyes. Scientific Reports, 7(1), 10793. https://doi.org/10.1038/s41598-017-11200-5.
Decety, J. (1996). The neurophysiological basis of motor imagery. Behavioural Brain Research, 77(1-2), 45-52. https://doi.org/10.1016/0166-4328(95)00225-1.
Decety, J., & Jeannerod, M. (1996). Mentally simulated movements in virtual reality: Does Fitt's law hold in motor imagery? Behavioural Brain Research, 72(1-2), 127-134. https://doi.org/10.1016/0166-4328(96)00141-6.
Decety, J., Jeannerod, M., & Prablanc, C. (1989). The timing of mentally represented actions. Behavioural Brain Research, 34(1-2), 35-42. https://doi.org/10.1016/s0166-4328(89)80088-9.
Delle Monache, S., Lacquaniti, F., & Bosco, G. (2015). Eye movements and manual interception of ballistic trajectories: Effects of law of motion perturbations and occlusions. Experimental Brain Research, 233(2), 359-374. https://doi.org/10.1007/s00221-014-4120-9.
Fooken, J., Kreyenmeier, P., & Spering, M. (2021). The role of eye movements in manual interception: A mini-review. Vision research, 183, 81-90. https://doi.org/10.1016/j.visres.2021.02.007.
Fooken, J., Yeo, S.-H., Pai, D. K., & Spering, M. (2016). Eye movement accuracy determines natural interception strategies. Journal of Vision, 16(14), 1. https://doi.org/10.1167/16.14.1.
Frank, C., Land, W. M., & Schack, T. (2016). Perceptual-cognitive changes during motor learning: The influence of mental and physical practice on mental representation, gaze behavior, and performance of a complex action. Frontiers in Psychology, 6, 1981. https://doi.org/10.3389/fpsyg.2015.01981.
Gauthier, G. M., & Hofferer, J. M. (1976). Eye tracking of self-moved targets in the absence of vision. Experimental Brain Research, 26, 121-139. https://doi.org/10.1007/BF00238277.
Goettker, A., & Gegenfurtner, K. R. (2021). A change in perspective: The interaction of saccadic and pursuit eye movements in oculomotor control and perception. Vision Research, 188, 283-296. https://doi.org/10.1016/j.visres.2021.08.004.
Goginsky, A. M., & Collins, D. (1996). Research design and mental practice. Journal of Sports Sciences, 14(5), 381-392. https://doi.org/10.1080/02640419608727725.
Gregg, M., Hall, C., & Butler, A. (2007). The MIQ-RS: A suitable option for examining movement imagery ability. Evidence-Based Complementary and Alternative Medicine, 7(2), 249-257. https://doi.org/10.1093/ecam/nem170.
Grèzes, J., & Decety, J. (2001). Functional anatomy of execution, mental simulation, observation, and verb generation of actions: A meta-analysis. Human Brain Mapping, 12(1), 1-19. https://doi.org/10.1002/1097-0193(200101)12:1<1::AID-HBM10>3.0.CO;2-V.
Guillot, A., & Collet, C. (2005). Duration of mentally simulated movement: A review. Journal of Motor Behavior, 37(1), 10-20. https://doi.org/10.3200/JMBR.37.1.10-20.
Guillot, A., Hoyek, N. E., Louis, M., & Collet, C. (2012). Understanding the timing of motor imagery: Recent findings and future directions. International Review of Sport and Exercise Psychology, 5, 22-23. https://doi.org/10.1080/1750984X.2011.623787.
Guillot, A., Louis, M., & Collet, C. (2010). Neurophysiological substrates of motor imagery ability. In A. Guillot & C. Collet (Eds.), The neurophysiological foundations of mental and motor imagery (pp. 109-124). Oxford University Press.
Helsen, W. F., Elliott, D., Starkes, J. L., & Ricker, K. L. (2000). Coupling of eye, finger, elbow, and shoulder movements during manual aiming. Journal of Motor Behavior, 32(3), 241-248. https://doi.org/10.1080/00222890009601375.
Heremans, E., Helsen, W. F., De Poel, H. J., Alaerts, K., Meyns, P., & Feys, P. (2009). Facilitation of motor imagery through movement-related cueing. Brain Research, 1278, 50-58. https://doi.org/10.1016/j.brainres.2009.04.041.
Heremans, E., Helsen, W. F., & Feys, P. (2008). The eyes as a mirror of our thoughts: Quantification of motor imagery of goal-directed movements through eye movement registration. Behavioural Brain Research, 187(2), 351-360. https://doi.org/10.1016/j.bbr.2007.09.028.
Huang, C. T., & Hwang, I. S. (2012). Eye-hand synergy and intermittent behaviors during target-directed tracking with visual and non-visual information. PLoS ONE, 7(12), e51417. https://doi.org/10.1371/journal.pone.0051417.
Katsumata, H., & Russell, D. M. (2012). Prospective versus predictive control in timing of hitting a falling ball. Experimental Brain Research, 216(4), 499-514. https://doi.org/10.1007/s00221-011-2954-y.
Körding, K. P., & Wolpert, D. M. (2004). Bayesian integration in sensorimotor learning. Nature, 427(6971), 244-247. https://doi.org/10.1038/nature02169.
Laeng, B., & Teodorescu, D.-S. (2002). Eye scanpath during visual imagery reenact those of perception of the same visual scene. Cognitive Science, 26(2), 207-231. https://doi.org/10.1207/s15516709cog2602&#95;3.
Larsson, L., Nystrom, M., & Stridh, M. (2013). Detection of saccades and postsaccadic oscillations in the presence of smooth pursuit. IEEE Transactions on Biomedical Engineering, 60(9), 2484-2493. https://doi.org/10.1109/TBME.2013.2258918.
López-Moliner, J., Field, D. T., & Wann, J. P. (2007). Interceptive timing: Prior knowledge matters. Journal of Vision, 7(13), 1-8. https://doi.org/10.1167/7.13.11.
Lotze, M., & Halsband, U. (2006). Motor imagery. Journal of Physiology, 99(4-6), 386-395. https://doi.org/10.1016/j.jphysparis.2006.03.012.
Lotze, M., & Zentgraf, K. (2010). Contribuiton of the primary motor cortex to motor imagery. In A. Guillot & C. Collet (Eds.), The neurophysiological foundations of mental imagery (pp. 31-45). Oxford University Press.
Lunenburger, L., Kutz, D. F., & Hoffmann, K. P. (2000). Influence of arm movements on saccades in humans. European Journal of Neuroscience, 12(11), 4107-4116. https://doi.org/10.1046/j.1460-9568.2000.00298.x.
Maruff, P., & Velakoulis, D. (2000). The voluntary control of motor imagery. Imagined movements in individuals with feigned motor impairment and conversion disorder. Neuropsychologia, 38(9), 1251-1260. https://doi.org/10.1016/s0028-3932(00)00031-2.
Mathôt, S., Schreij, D., & Theeuwes, J. (2012). OpenSesame: An open-source graphical experiment builder for the social sciences. Behavior Research Methods, 44, 314-324. https://doi.org/10.3758/s13428-011-0168-7.
McCormick, S. A., Causer, J., & Holmes, P. S. (2013). Active vision during action execution, observation and imagery: Evidence for shared motor representations. PLoS ONE, 8(6), e67761. https://doi.org/10.1371/journal.pone.0067761.
Merchant, H., & Georgopoulos, A. P. (2006). Neurophysiology of perceptual and motor aspects of interception. Journal of Neurophysiology, 95(1), 1-13. https://doi.org/10.1152/jn.00422.2005.
Moran, A., Guillot, A., MacIntyre, T., & Collet, C. (2012). Re-imagining motor imagery: Building bridges between cognitive neuroscience and sport psychology. British Journal of Psychology, 103(2), 224-247. https://doi.org/10.1111/j.2044-8295.2011.02068.x.
Mrotek, L. A. (2013). Following and intercepting scribbles: Interactions between eye and hand control. Experimental Brain Research, 227(2), 161-174. https://doi.org/10.1007/s00221-013-3496-2.
Mrotek, L. A., & Soechting, J. F. (2007). Target interception: Hand-eye coordination and strategies. Journal of Neuroscience, 27(27), 7297-7309. https://doi.org/10.1523/JNEUROSCI.2046-07.2007.
Munzert, J., Lorey, B., & Zentgraf, K. (2009). Cognitive motor processes: The role of motor imagery in the study of motor representations. Brain Research Reviews, 60(2), 306-326. https://doi.org/10.1016/j.brainresrev.2008.12.024.
Neggers, S. F. W., & Bekkering, H. (2002). Coordinated control of eye and hand movements in dynamic reaching. Human Movement Science, 21(3), 349-376. https://doi.org/10.1016/S0167-9457(02)00120-3.
Neuper, C., Scherer, R., Reiner, M., & Pfurtscheller, G. (2005). Imagery of motor actions: Differential effects of kinesthetic and visual-motor mode of imagery in single-trial EEG. Cognitive Brain Research, 25(3), 668-677. https://doi.org/10.1016/j.cogbrainres.2005.08.014.
Niehorster, D. C., Siu, W. W., & Li, L. (2015). Manual tracking enhances smooth pursuit eye movements. Journal of Vision, 15(15), 11. https://doi.org/10.1167/15.15.11.
Oldfield, R. C. (1971). The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia, 9(1), 97-113. https://doi.org/10.1016/0028-3932(71)90067-4.
Orban de Xivry, J.-J., & Lefèvre, P. (2007). Saccades and pursuit: Two outcomes of a single sensorimotor process. The Journal of Physiology, 584(1), 11-23. https://doi.org/10.1113/jphysiol.2007.139881.
Oudejans, R. R., Michaels, C. F., Bakker, F. C., & Davids, K. (1999). Shedding some light on catching in the dark: Perceptual mechanisms for catching fly balls. Journal of Experimental Psychology Human Perception and Performance, 25(2), 531-542. https://doi.org/10.1037//0096-1523.25.2.531.
Panchuk, D., Davids, K., Sakadjian, A., Macmahon, C., & Parrington, L. (2013). Did you see that? Dissociating advanced visual information and ball flight constrains perception and action processes during one-handed catching. Acta Psychologica, 142(3), 394-401. https://doi.org/10.1016/j.actpsy.2013.01.014.
Sailer, U., Flanagan, J. R., & Johansson, R. S. (2005). Eye-hand coordination during learning of a novel visuomotor task. Journal of Neuroscience, 25(39), 8833-8842. https://doi.org/10.1523/JNEUROSCI.2658-05.2005.
Sarlegna, F. R., & Mutha, P. K. (2015). The influence of visual target information on the online control of movements. Vision Research, 110(PB), 144-154. https://doi.org/10.1016/j.visres.2014.07.001.
Saunders, J. a., & Knill, D. C. (2004). Visual feedback control of hand movements. Journal of Neuroscience, 24(13), 3223-3234. https://doi.org/10.1523/JNEUROSCI.4319-03.2004.
Saunders, J. A., & Knill, D. C. (2003). Humans use continuous visual feedback from the hand to control fast reaching movements. Experimental Brain Research, 152(3), 341-352. https://doi.org/10.1007/s00221-003-1525-2.
Shadmehr, R., Smith, M. A., & Krakauer, J. W. (2010). Error correction, sensory prediction, and adaptation in motor control. Annual Review of Neuroscience, 33, 89-108. https://doi.org/10.1146/annurev-neuro-060909-153135.
Sirigu, A., & Duhamel, J. R. (2001). Motor and visual imagery as two complementary but neurally dissociable mental processes. Journal of Cognitive Neuroscience, 13(7), 910-919. https://doi.org/10.1162/089892901753165827.
Smith, D., & Collins, D. J. (2004). Mental practice, motor performance, and the late CNV. Journal of Sport Exercise Psychology, 26(3), 412-426. https://doi.org/10.1123/jsep.26.3.412.
Spering, M., Schütz, A. C., Braun, D. I., & Gegenfurtner, K. R. (2011). Keep your eyes on the ball: Smooth pursuit eye movements enhance prediction of visual motion. Journal of Neurophysiology, 105(4), 1756-1767. https://doi.org/10.1152/jn.00344.2010.
Spivey, M. J., & Geng, J. J. (2001). Oculomotor mechanisms activated by imagery and memory: Eye movements to absent objects. Psychological Research, 65(4), 235-241. https://doi.org/10.1007/s004260100059.
Stinear, C. M., Byblow, W. D., Steyvers, M., Levin, O., & Swinnen, S. P. (2006). Kinesthetic, but not visual, motor imagery modulates corticomotor excitability. Experimental Brain Research, 168(1-2), 157-164. https://doi.org/10.1007/s00221-005-0078-y.
Tresilian, J. R. (2005). Hitting a moving target: Perception and action in the timing of rapid interceptions. Perception & Psychophysics, 67(1), 129-149. https://doi.org/10.3758/BF03195017.
Tresilian, J. R., & Lonergan, A. (2002). Intercepting a moving target: Effects of temporal precision constraints and movement amplitude. Experimental Brain Research, 142(2), 193-207. https://doi.org/10.1007/s00221-001-0920-9.
Van Donkelaar, P., & Lee, R. G. (1994). Interactions between the eye and hand motor systems: Disruptions due to cerebellar dysfunction. Journal of Neurophysiology, 72(4), 1674-1685. https://doi.org/10.1152/jn.1994.72.4.1674.
Wakefield, C. J., & Smith, D. (2009). Impact of differing frequencies of PETTLEP imagery on netball shooting performance. Journal of Imagery Research in Sport and Physical Activity, 4(1), 1-12. https://doi.org/10.2202/1932-0191.1043.
Watson, M. E., & Rubin, D. C. (1996). Spatial imagery preserves temporal order. Memory (Hove, England), 4(5), 515-534. https://doi.org/10.1080/741940777.
Zago, M., Bosco, G., Maffei, V., Iosa, M., Ivanenko, Y. P., & Lacquaniti, F. (2004). Internal models of target motion: Expected dynamics overrides measured kinematics in timing manual interceptions. Journal of Neurophysiology, 91(4), 1620-1634. https://doi.org/10.1152/jn.00862.2003.
Zago, M., & Lacquaniti, F. (2005). Cognitive, perceptual and action-oriented representations of falling objects. Neuropsychologia, 43(2), 178-188. https://doi.org/10.1016/j.neuropsychologia.2004.11.005.
Zago, M., McIntyre, J., Senot, P., & Lacquaniti, F. (2009). Visuo-motor coordination and internal models for object interception. Experimental Brain Research, 192(4), 571-604. https://doi.org/10.1007/s00221-008-1691-3.
Zhao, H., & Warren, W. H. (2014). On-line and model-based approaches to the visual control of action. Vision Research, 110(PB), 190-202. https://doi.org/10.1016/j.visres.2014.10.008.
فهرسة مساهمة: Keywords: action execution; action simulation; eye movements; interception; motor imagery; smooth pursuit analysis; visual perception
تواريخ الأحداث: Date Created: 20230729 Date Completed: 20231108 Latest Revision: 20231113
رمز التحديث: 20231215
DOI: 10.1111/psyp.14401
PMID: 37515410
قاعدة البيانات: MEDLINE
الوصف
تدمد:1540-5958
DOI:10.1111/psyp.14401