دورية أكاديمية

Ultrafast exciton fluid flow in an atomically thin MoS 2 semiconductor.

التفاصيل البيبلوغرافية
العنوان: Ultrafast exciton fluid flow in an atomically thin MoS 2 semiconductor.
المؤلفون: Del Águila AG; Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore. andres.granados.delaguila@gmail.com., Wong YR; Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore., Wadgaonkar I; Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore., Fieramosca A; Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore., Liu X; Institutes of Physical Science and Information Technology, Anhui University, Hefei, P.R. China., Vaklinova K; Institute for Functional Intelligent Materials, National University of Singapore, Singapore, Singapore., Dal Forno S; Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore., Do TTH; Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore., Wei HY; Institute for Functional Intelligent Materials, National University of Singapore, Singapore, Singapore.; Department of Physics, National University of Singapore, Singapore, Singapore., Watanabe K; National Institute for Materials Science, Tsukuba, Japan., Taniguchi T; National Institute for Materials Science, Tsukuba, Japan., Novoselov KS; Institute for Functional Intelligent Materials, National University of Singapore, Singapore, Singapore.; Department of Materials Science and Engineering, National University of Singapore, Singapore, Singapore., Koperski M; Institute for Functional Intelligent Materials, National University of Singapore, Singapore, Singapore.; Department of Materials Science and Engineering, National University of Singapore, Singapore, Singapore., Battiato M; Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore., Xiong Q; State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing, P.R. China. qihua_xiong@tsinghua.edu.cn.; Frontier Science Center for Quantum Information, Beijing, P.R. China. qihua_xiong@tsinghua.edu.cn.; Collaborative Innovation Center of Quantum Matter, Beijing, P.R. China. qihua_xiong@tsinghua.edu.cn.; Beijing Academy of Quantum Information Sciences, Beijing, P.R. China. qihua_xiong@tsinghua.edu.cn.
المصدر: Nature nanotechnology [Nat Nanotechnol] 2023 Sep; Vol. 18 (9), pp. 1012-1019. Date of Electronic Publication: 2023 Jul 31.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Nature Pub. Group Country of Publication: England NLM ID: 101283273 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1748-3395 (Electronic) Linking ISSN: 17483387 NLM ISO Abbreviation: Nat Nanotechnol Subsets: PubMed not MEDLINE; MEDLINE
أسماء مطبوعة: Original Publication: London : Nature Pub. Group, 2006-
مستخلص: Excitons (coupled electron-hole pairs) in semiconductors can form collective states that sometimes exhibit spectacular nonlinear properties. Here, we show experimental evidence of a collective state of short-lived excitons in a direct-bandgap, atomically thin MoS 2 semiconductor whose propagation resembles that of a classical liquid as suggested by the nearly uniform photoluminescence through the MoS 2 monolayer regardless of crystallographic defects and geometric constraints. The exciton fluid flows over ultralong distances (at least 60 μm) at a speed of ~1.8 × 10 7  m s -1 (~6% the speed of light). The collective phase emerges above a critical laser power, in the absence of free charges and below a critical temperature (usually T c  ≈ 150 K) approaching room temperature in hexagonal-boron-nitride-encapsulated devices. Our theoretical simulations suggest that momentum is conserved and local equilibrium is achieved among excitons; both these features are compatible with a fluid dynamics description of the exciton transport.
(© 2023. The Author(s), under exclusive licence to Springer Nature Limited.)
References: Müller, M., Schmalian, J. & Fritz, L. Graphene: a nearly perfect fluid. Phys. Rev. Lett. 103, 025301 (2009). (PMID: 10.1103/PhysRevLett.103.025301)
Bandurin, D. A. et al. Negative local resistance caused by viscous electron backflow in graphene. Science 351, 1055–1058 (2016). (PMID: 10.1126/science.aad0201)
Crossno, J. et al. Observation of the Dirac fluid and the breakdown of the Wiedemann–Franz law in graphene. Science 351, 1058–1061 (2016). (PMID: 10.1126/science.aad0343)
Moll, P. J. W., Kushwaha, P., Nandi, N., Schmidt, B. & Mackenzie, A. P. Evidence for hydrodynamic electron flow in PdCuO 2 . Science 351, 1061–1064 (2016). (PMID: 10.1126/science.aac8385)
Huang, K. Equation of state of a Bose–Einstein system of particles with attractive interactions. Phys. Rev. 119, 1129–1142 (1960). (PMID: 10.1103/PhysRev.119.1129)
Fleming, P. D. Hydrodynamic behavior of triplet excitons. J. Chem. Phys. 59, 3199–3206 (1973). (PMID: 10.1063/1.1680461)
Link, B. & Baym, G. Hydrodynamic transport of excitons in semiconductors and Bose–Einstein condensation. Phys. Rev. Lett. 69, 2959–2962 (1992). (PMID: 10.1103/PhysRevLett.69.2959)
Laikhtman, B. & Rapaport, R. Exciton correlations in coupled quantum wells and their luminescence blue shift. Phys. Rev. B 80, 195313 (2009). (PMID: 10.1103/PhysRevB.80.195313)
Versteegh, M. A. M., van Lange, A. J., Stoof, H. T. C. & Dijkhuis, J. I. Observation of preformed electron–hole Cooper pairs in highly excited ZnO. Phys. Rev. B 85, 195206 (2012). (PMID: 10.1103/PhysRevB.85.195206)
Stern, M., Umansky, V. & Bar-Joseph, I. Exciton liquid in coupled quantum wells. Science 343, 55–57 (2014). (PMID: 10.1126/science.1243409)
Glazov, M. M. & Suris, R. A. Collective states of excitons in semiconductors. Phys.-Uspekhi 63, 1051–1071 (2020). (PMID: 10.3367/UFNe.2019.10.038663)
Honold, A., Schultheis, L., Kuhl, J. & Tu, C. W. Collision broadening of two-dimensional excitons in a gaas single quantum well. Phys. Rev. B 40, 6442–6445 (1989). (PMID: 10.1103/PhysRevB.40.6442)
Ramon, G., Mann, A. & Cohen, E. Theory of neutral and charged exciton scattering with electrons in semiconductor quantum wells. Phys. Rev. B 67, 045323 (2003). (PMID: 10.1103/PhysRevB.67.045323)
Anankine, R. et al. Temporal coherence of spatially indirect excitons across Bose–Einstein condensation: the role of free carriers. N. J. Phys. 20, 073049 (2018). (PMID: 10.1088/1367-2630/aad30a)
Keldysh, L. V. The electron–hole liquid in semiconductors. Contemp. Phys. 27, 395–428 (1986). (PMID: 10.1080/00107518608211022)
Korn, T., Heydrich, S., Hirmer, M., Schmutzler, J. & Schüller, C. Low-temperature photocarrier dynamics in monolayer MoS 2 . Appl. Phys. Lett. 99, 102109 (2011). (PMID: 10.1063/1.3636402)
Robert, C. et al. Exciton radiative lifetime in transition metal dichalcogenide monolayers. Phys. Rev. B 93, 205423 (2016). (PMID: 10.1103/PhysRevB.93.205423)
Liu, S. et al. Room-temperature valley polarization in atomically thin semiconductors via chalcogenide alloying. ACS Nano 14, 9873–9883 (2020). (PMID: 10.1021/acsnano.0c02703)
Steinhoff, A. et al. Exciton fission in monolayer transition metal dichalcogenide semiconductors. Nat. Commun. 8, 1166 (2017). (PMID: 10.1038/s41467-017-01298-6)
Selig, M. et al. Dark and bright exciton formation, thermalization, and photoluminescence in monolayer transition metal dichalcogenides. 2D Mater. 5, 035017 (2018). (PMID: 10.1088/2053-1583/aabea3)
Efimkin, D. K., Laird, E. K., Levinsen, J., Parish, M. M. & MacDonald, A. H. Electron–exciton interactions in the exciton–polaron problem. Phys. Rev. B 103, 075417 (2021). (PMID: 10.1103/PhysRevB.103.075417)
Kumar, N. et al. Exciton diffusion in monolayer and bulk MoSe 2 . Nanoscale 6, 4915–4919 (2014). (PMID: 10.1039/C3NR06863C)
Kato, T. & Kaneko, T. Transport dynamics of neutral excitons and trions in monolayer WS 2 . ACS Nano 10, 9687–9694 (2016). (PMID: 10.1021/acsnano.6b05580)
Onga, M., Zhang, Y., Ideue, T. & Iwasa, Y. Exciton Hall effect in monolayer MoSs 2 . Nat. Mat. 16, 1193–1197 (2017). (PMID: 10.1038/nmat4996)
Zipfel, J. et al. Exciton diffusion in monolayer semiconductors with suppressed disorder. Phys. Rev. B 101, 115430 (2020). (PMID: 10.1103/PhysRevB.101.115430)
Glazov, M. M. Quantum interference effect on exciton transport in monolayer semiconductors. Phys. Rev. Lett. 124, 166802 (2020). (PMID: 10.1103/PhysRevLett.124.166802)
Hotta, T. et al. Exciton diffusion in hBN-encapsulated monolayer MoSe 2 . Phys. Rev. B 102, 115424 (2020). (PMID: 10.1103/PhysRevB.102.115424)
Uddin, S. Z. et al. Neutral exciton diffusion in monolayer MoS 2 . ACS Nano 14, 13433–13440 (2020). (PMID: 10.1021/acsnano.0c05305)
High, A. A. et al. Spontaneous coherence in a cold exciton gas. Nature 483, 584–588 (2012). (PMID: 10.1038/nature10903)
Anankine, R. et al. Quantized vortices and four-component superfluidity of semiconductor excitons. Phys. Rev. Lett. 118, 127402 (2017). (PMID: 10.1103/PhysRevLett.118.127402)
Shahnazaryan, V., Iorsh, I., Shelykh, I. A. & Kyriienko, O. Exciton–exciton interaction in transition-metal dichalcogenide monolayers. Phys. Rev. B 96, 115409 (2017). (PMID: 10.1103/PhysRevB.96.115409)
Amani, M. et al. Near-unity photoluminescence quantum yield in MoSs 2 . Science 350, 1065–1068 (2015). (PMID: 10.1126/science.aad2114)
Lien, D.-H. et al. Electrical suppression of all nonradiative recombination pathways in monolayer semiconductors. Science 364, 468–471 (2019). (PMID: 10.1126/science.aaw8053)
Ballarini, D. et al. Macroscopic two-dimensional polariton condensates. Phys. Rev. Lett. 118, 215301 (2017). (PMID: 10.1103/PhysRevLett.118.215301)
Deng, H., Haug, H. & Yamamoto, Y. Exciton–polariton Bose–Einstein condensation. Rev. Mod. Phys. 82, 1489–1537 (2010). (PMID: 10.1103/RevModPhys.82.1489)
Michalsky, T., Wille, M., Grundmann, M. & Schmidt-Grund, R. Spatio-temporal evolution of coherent polariton modes in ZnO microwire cavities at room temperature. Nano Lett. 18, 6820–6825 (2018). (PMID: 10.1021/acs.nanolett.8b02705)
Elias, D. C. et al. Dirac cones reshaped by interaction effects in suspended graphene. Nat. Phys. 7, 701–704 (2011). (PMID: 10.1038/nphys2049)
Sung, J. et al. Long-range ballistic propagation of carriers in methylammonium lead iodide perovskite thin films. Nat. Phys. 16, 171–176 (2020). (PMID: 10.1038/s41567-019-0730-2)
Kalt, H. et al. Quasi-ballistic transport of excitons in quantum wells. J. Lumin. 112, 136–141 (2005). (PMID: 10.1016/j.jlumin.2004.09.012)
Butov, L. V., Gossard, A. C. & Chemla, D. S. Macroscopically ordered state in an exciton system. Nature 418, 751–754 (2002). (PMID: 10.1038/nature00943)
Snoke, D., Denev, S., Liu, Y., Pfeiffer, L. & West, K. Long-range transport in excitonic dark states in coupled quantum wells. Nature 418, 754 (2002). (PMID: 10.1038/nature00940)
Dang, S. et al. Observation of algebraic time order for two-dimensional dipolar excitons. Phys. Rev. Res. 2, 032013 (2020). (PMID: 10.1103/PhysRevResearch.2.032013)
Trauernicht, D. P., Wolfe, J. P. & Mysyrowicz, A. Highly mobile paraexcitons in cuprous oxide. Phys. Rev. Lett. 52, 855–858 (1984). (PMID: 10.1103/PhysRevLett.52.855)
Haas, F. & Mahmood, S. Linear and nonlinear ion-acoustic waves in nonrelativistic quantum plasmas with arbitrary degeneracy. Phys. Rev. E 92, 053112 (2015). (PMID: 10.1103/PhysRevE.92.053112)
Svintsov, D., Vyurkov, V., Yurchenko, S., Otsuji, T. & Ryzhii, V. Hydrodynamic model for electron–hole plasma in graphene. J. Appl. Phys. 111, 083715 (2012). (PMID: 10.1063/1.4705382)
Erkensten, D., Brem, S. & Malic, E. Exciton-exciton interaction in transition metal dichalcogenide monolayers and van der Waals heterostructures. Phys. Rev. B 103, 045426 (2021). (PMID: 10.1103/PhysRevB.103.045426)
Dery, H. & Song, Y. Polarization analysis of excitons in monolayer and bilayer transition-metal dichalcogenides. Phys. Rev. B 92, 125431 (2015). (PMID: 10.1103/PhysRevB.92.125431)
Do, T. T. H. et al. Bright exciton fine-structure in two-dimensional lead halide perovskites. Nano Lett. 20, 5141–5148 (2020). (PMID: 10.1021/acs.nanolett.0c01364)
Qiu, D. Y., Cao, T. & Louie, S. G. Nonanalyticity, valley quantum phases, and lightlike exciton dispersion in monolayer transition metal dichalcogenides: theory and first-principles calculations. Phys. Rev. Lett. 115, 176801 (2015). (PMID: 10.1103/PhysRevLett.115.176801)
Kadantsev, E. S. & Hawrylak, P. Electronic structure of a single MoS 2 monolayer. Solid State Commun. 152, 909–913 (2012). (PMID: 10.1016/j.ssc.2012.02.005)
Chen, W., Huang, C.-J. & Zhu, Q. Searching for unconventional superfluid in exciton condensate of monolayer semiconductors. Preprint at https://doi.org/10.48550/arXiv.2302.05585.
Guo, H., Zhang, X. & Lu, G. Tuning moiré; excitons in Janus heterobilayers for high-temperature Bose–Einstein condensation. Sci. Adv. 8, eabp9757 (2022). (PMID: 10.1126/sciadv.abp9757)
معلومات مُعتمدة: MOE2018-T3-1-002 Ministry of Education - Singapore (MOE); 12104006 National Natural Science Foundation of China (National Science Foundation of China)
تواريخ الأحداث: Date Created: 20230731 Latest Revision: 20230922
رمز التحديث: 20231215
DOI: 10.1038/s41565-023-01438-8
PMID: 37524907
قاعدة البيانات: MEDLINE
الوصف
تدمد:1748-3395
DOI:10.1038/s41565-023-01438-8