دورية أكاديمية

Melanoma-derived soluble mediators modulate neutrophil biological properties and the release of neutrophil extracellular traps.

التفاصيل البيبلوغرافية
العنوان: Melanoma-derived soluble mediators modulate neutrophil biological properties and the release of neutrophil extracellular traps.
المؤلفون: Modestino L; Department of Translational Medical Sciences (DiSMeT), University of Naples Federico II, 80131, Naples, Italy.; WAO Center of Excellence, University of Naples Federico II, 80131, Naples, Italy., Cristinziano L; Department of Translational Medical Sciences (DiSMeT), University of Naples Federico II, 80131, Naples, Italy.; WAO Center of Excellence, University of Naples Federico II, 80131, Naples, Italy., Trocchia M; Department of Translational Medical Sciences (DiSMeT), University of Naples Federico II, 80131, Naples, Italy.; WAO Center of Excellence, University of Naples Federico II, 80131, Naples, Italy., Ventrici A; Department of Translational Medical Sciences (DiSMeT), University of Naples Federico II, 80131, Naples, Italy.; WAO Center of Excellence, University of Naples Federico II, 80131, Naples, Italy., Capone M; Melanoma, Cancer Immunotherapy, and Development Therapeutics Unit, Istituto Nazionale Tumori IRCCS Fondazione 'G. Pascale', 80131, Naples, Italy., Madonna G; Melanoma, Cancer Immunotherapy, and Development Therapeutics Unit, Istituto Nazionale Tumori IRCCS Fondazione 'G. Pascale', 80131, Naples, Italy., Loffredo S; Department of Translational Medical Sciences (DiSMeT), University of Naples Federico II, 80131, Naples, Italy.; WAO Center of Excellence, University of Naples Federico II, 80131, Naples, Italy.; Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131, Naples, Italy.; Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council (CNR), 80131, Naples, Italy., Ferrara AL; Department of Translational Medical Sciences (DiSMeT), University of Naples Federico II, 80131, Naples, Italy.; WAO Center of Excellence, University of Naples Federico II, 80131, Naples, Italy.; Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council (CNR), 80131, Naples, Italy., Romanelli M; Melanoma, Cancer Immunotherapy, and Development Therapeutics Unit, Istituto Nazionale Tumori IRCCS Fondazione 'G. Pascale', 80131, Naples, Italy., Simeone E; Melanoma, Cancer Immunotherapy, and Development Therapeutics Unit, Istituto Nazionale Tumori IRCCS Fondazione 'G. Pascale', 80131, Naples, Italy., Varricchi G; Department of Translational Medical Sciences (DiSMeT), University of Naples Federico II, 80131, Naples, Italy.; WAO Center of Excellence, University of Naples Federico II, 80131, Naples, Italy.; Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131, Naples, Italy.; Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council (CNR), 80131, Naples, Italy., Rossi FW; Department of Translational Medical Sciences (DiSMeT), University of Naples Federico II, 80131, Naples, Italy.; WAO Center of Excellence, University of Naples Federico II, 80131, Naples, Italy.; Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131, Naples, Italy., de Paulis A; Department of Translational Medical Sciences (DiSMeT), University of Naples Federico II, 80131, Naples, Italy.; WAO Center of Excellence, University of Naples Federico II, 80131, Naples, Italy.; Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131, Naples, Italy., Marone G; Department of Translational Medical Sciences (DiSMeT), University of Naples Federico II, 80131, Naples, Italy.; WAO Center of Excellence, University of Naples Federico II, 80131, Naples, Italy.; Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131, Naples, Italy.; Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council (CNR), 80131, Naples, Italy., Ascierto PA; Melanoma, Cancer Immunotherapy, and Development Therapeutics Unit, Istituto Nazionale Tumori IRCCS Fondazione 'G. Pascale', 80131, Naples, Italy., Galdiero MR; Department of Translational Medical Sciences (DiSMeT), University of Naples Federico II, 80131, Naples, Italy. mariarosaria.galdiero@unina.it.; WAO Center of Excellence, University of Naples Federico II, 80131, Naples, Italy. mariarosaria.galdiero@unina.it.; Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131, Naples, Italy. mariarosaria.galdiero@unina.it.
المصدر: Cancer immunology, immunotherapy : CII [Cancer Immunol Immunother] 2023 Oct; Vol. 72 (10), pp. 3363-3376. Date of Electronic Publication: 2023 Jul 31.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Springer Verlag Country of Publication: Germany NLM ID: 8605732 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1432-0851 (Electronic) Linking ISSN: 03407004 NLM ISO Abbreviation: Cancer Immunol Immunother Subsets: MEDLINE
أسماء مطبوعة: Publication: Berlin : Springer Verlag
Original Publication: Berlin ; New York, NY : Springer International, c1982-
مواضيع طبية MeSH: Extracellular Traps* , Melanoma*/pathology, Humans ; Neutrophils/pathology ; Chemotaxis ; Tumor Microenvironment
مستخلص: Polymorphonuclear neutrophils (PMNs) are the main effector cells in the inflammatory response. The significance of PMN infiltration in the tumor microenvironment remains unclear. Metastatic melanoma is the most lethal skin cancer with an increasing incidence over the last few decades. This study aimed to investigate the role of PMNs and their related mediators in human melanoma. Highly purified human PMNs from healthy donors were stimulated in vitro with conditioned media (CM) derived from the melanoma cell lines SKMEL28 and A375 (melanoma CM), and primary melanocytes as controls. PMN biological properties (chemotaxis, survival, activation, cell tracking, morphology and NET release) were evaluated. We found that the A375 cell line produced soluble factors that promoted PMN chemotaxis, survival, activation and modification of morphological changes and kinetic properties. Furthermore, in both melanoma cell lines CM induced chemotaxis, activation and release of neutrophil extracellular traps (NETs) from PMNs. In contrast, the primary melanocyte CM did not modify the biological behavior of PMNs. In addition, serum levels of myeloperoxidase, matrix metalloprotease-9, CXCL8/IL-8, granulocyte and monocyte colony-stimulating factor and NETs were significantly increased in patients with advanced melanoma compared to healthy controls. Melanoma cell lines produce soluble factors able to "educate" PMNs toward an activated functional state. Patients with metastatic melanoma display increased circulating levels of neutrophil-related mediators and NETs. Further investigations are needed to better understand the role of these "tumor-educated neutrophils" in modifying melanoma cell behavior.
(© 2023. The Author(s).)
References: Miller KD, Nogueira L, Devasia T, Mariotto AB, Yabroff KR, Jemal A, Kramer J, Siegel RL (2022) Cancer treatment and survivorship statistics, 2022. CA Cancer J Clin. https://doi.org/10.3322/caac.21731. (PMID: 10.3322/caac.2173136346402)
Forsea AM (2020) Melanoma epidemiology and early detection in Europe: diversity and disparities. Dermatol Pract Concept 10:e2020033. https://doi.org/10.5826/dpc.1003a33. (PMID: 10.5826/dpc.1003a33326423047319793)
Hodi FS, Sileni VC, Lewis KD et al (2022) Long-term survival in advanced melanoma for patients treated with nivolumab plus ipilimumab in CheckMate 067. J Clin Oncol 40:9522. https://doi.org/10.1200/JCO.2022.40.16_suppl.9522. (PMID: 10.1200/JCO.2022.40.16_suppl.9522)
Wolchok JD, Chiarion-Sileni V, Gonzalez R et al (2022) Long-term outcomes with nivolumab plus ipilimumab or nivolumab alone versus ipilimumab in patients with advanced melanoma. J Clin Oncol 40:127–137. https://doi.org/10.1200/JCO.21.02229. (PMID: 10.1200/JCO.21.0222934818112)
Ribas A, Hu-Lieskovan S (2016) What does PD-L1 positive or negative mean? J Exp Med 213:2835–2840. https://doi.org/10.1084/jem.20161462. (PMID: 10.1084/jem.20161462279036045154949)
Ramos RN, de Moraes CJ, Zelante B, Barbuto JA (2013) What are the molecules involved in regulatory T-cells induction by dendritic cells in cancer? Clin Dev Immunol 2013:806025. https://doi.org/10.1155/2013/806025. (PMID: 10.1155/2013/806025237620973674660)
Hartley GP, Chow L, Ammons DT, Wheat WH, Dow SW (2018) Programmed cell death ligand 1 (PD-L1) signaling regulates macrophage proliferation and activation. Cancer Immunol Res. https://doi.org/10.1158/2326-6066.CIR-17-0537. (PMID: 10.1158/2326-6066.CIR-17-053730012633)
Luo Q, Huang Z, Ye J et al (2016) PD-L1-expressing neutrophils as a novel indicator to assess disease activity and severity of systemic lupus erythematosus. Arthritis Res Ther 18:47. https://doi.org/10.1186/s13075-016-0942-0. (PMID: 10.1186/s13075-016-0942-0268676434751645)
Buddhisa S, Rinchai D, Ato M, Bancroft GJ, Lertmemongkolchai G (2015) Programmed death ligand 1 on Burkholderia pseudomallei-infected human polymorphonuclear neutrophils impairs T cell functions. J Immunol 194:4413–4421. https://doi.org/10.4049/jimmunol.1402417. (PMID: 10.4049/jimmunol.140241725801435)
McNab FW, Berry MP, Graham CM et al (2011) Programmed death ligand 1 is over-expressed by neutrophils in the blood of patients with active tuberculosis. Eur J Immunol 41:1941–1947. https://doi.org/10.1002/eji.201141421. (PMID: 10.1002/eji.201141421215097823179592)
Cristinziano L, Modestino L, Capone M et al (2022) PD-L1(+) neutrophils as novel biomarkers for stage IV melanoma patients treated with nivolumab. Front Immunol 13:962669. https://doi.org/10.3389/fimmu.2022.962669. (PMID: 10.3389/fimmu.2022.962669360169609398490)
Galdiero MR, Varricchi G, Loffredo S, Mantovani A, Marone G (2017) Roles of neutrophils in cancer growth and progression. J Leukoc Biol. https://doi.org/10.1002/JLB.3MR0717-292R. (PMID: 10.1002/JLB.3MR0717-292R29345348)
Mantovani A, Cassatella MA, Costantini C, Jaillon S (2011) Neutrophils in the activation and regulation of innate and adaptive immunity. Nat Rev Immunol 11:519–531. https://doi.org/10.1038/nri3024. (PMID: 10.1038/nri302421785456)
Donskov F (2013) Immunomonitoring and prognostic relevance of neutrophils in clinical trials. Semin Cancer Biol. https://doi.org/10.1016/j.semcancer.2013.02.001. (PMID: 10.1016/j.semcancer.2013.02.00123403174)
Galdiero MR, Varricchi G, Loffredo S et al (2018) Potential involvement of neutrophils in human thyroid cancer. PLoS ONE 13:e0199740. https://doi.org/10.1371/journal.pone.0199740. (PMID: 10.1371/journal.pone.0199740299535046023126)
Bald T, Quast T, Landsberg J et al (2014) Ultraviolet-radiation-induced inflammation promotes angiotropism and metastasis in melanoma. Nature 507:109–113. https://doi.org/10.1038/nature13111. (PMID: 10.1038/nature1311124572365)
Rotondo R, Bertolotto M, Barisione G et al (2011) Exocytosis of azurophil and arginase 1-containing granules by activated polymorphonuclear neutrophils is required to inhibit T lymphocyte proliferation. J Leukoc Biol 89:721–727. https://doi.org/10.1189/jlb.1109737. (PMID: 10.1189/jlb.110973721330347)
Rawat K, Syeda S, Shrivastava A (2022) Hyperactive neutrophils infiltrate vital organs of tumor bearing host and contribute to gradual systemic deterioration via upregulated NE, MPO and MMP-9 activity. Immunol Lett 241:35–48. https://doi.org/10.1016/j.imlet.2021.12.001. (PMID: 10.1016/j.imlet.2021.12.00134890699)
Rawat K, Syeda S, Shrivastava A (2021) Neutrophil-derived granule cargoes: paving the way for tumor growth and progression. Cancer Metastasis Rev 40:221–244. https://doi.org/10.1007/s10555-020-09951-1. (PMID: 10.1007/s10555-020-09951-1334381047802614)
Brinkmann V (2018) Neutrophil extracellular traps in the second decade. J Innate Immun 10:414–421. https://doi.org/10.1159/000489829. (PMID: 10.1159/000489829299094126784051)
Cristinziano L, Modestino L, Antonelli A, Marone G, Simon HU, Varricchi G, Galdiero MR (2022) Neutrophil extracellular traps in cancer. Semin Cancer Biol 79:91–104. https://doi.org/10.1016/j.semcancer.2021.07.011. (PMID: 10.1016/j.semcancer.2021.07.01134280576)
Blenman KRM, Wang J, Cowper S, Bosenberg M (2019) Pathology of spontaneous and immunotherapy-induced tumor regression in a murine model of melanoma. Pigment Cell Melanoma Res 32:448–457. https://doi.org/10.1111/pcmr.12769. (PMID: 10.1111/pcmr.12769307022176500596)
Schedel F, Mayer-Hain S, Pappelbaum KI et al (2020) Evidence and impact of neutrophil extracellular traps in malignant melanoma. Pigment Cell Melanoma Res 33:63–73. https://doi.org/10.1111/pcmr.12818. (PMID: 10.1111/pcmr.1281831402559)
Muzio M, Re F, Sironi M, Polentarutti N, Minty A, Caput D, Ferrara P, Mantovani A, Colotta F (1994) Interleukin-13 induces the production of interleukin-1 receptor antagonist (IL-1ra) and the expression of the mRNA for the intracellular (keratinocyte) form of IL-1ra in human myelomonocytic cells. Blood 83:1738–1743. (PMID: 10.1182/blood.V83.7.1738.17387908231)
Calzetti F, Tamassia N, Arruda-Silva F, Gasperini S, Cassatella MA (2017) The importance of being “pure” neutrophils. J Allergy Clin Immunol 139:352–355. https://doi.org/10.1016/j.jaci.2016.06.025. (PMID: 10.1016/j.jaci.2016.06.02527567327)
Borriello F, Iannone R, Di Somma S et al (2016) GM-CSF and IL-3 modulate human monocyte TNF-alpha production and renewal in in vitro models of trained immunity. Front Immunol 7:680. https://doi.org/10.3389/fimmu.2016.00680. (PMID: 10.3389/fimmu.2016.0068028138327)
Dhawan P, Richmond A (2002) Role of CXCL1 in tumorigenesis of melanoma. J Leukoc Biol 72:9–18. (PMID: 10.1189/jlb.72.1.912101257)
Waugh DJ, Wilson C (2008) The interleukin-8 pathway in cancer. Clin Cancer Res 14:6735–6741. https://doi.org/10.1158/1078-0432.CCR-07-4843. (PMID: 10.1158/1078-0432.CCR-07-484318980965)
Barreda DR, Hanington PC, Belosevic M (2004) Regulation of myeloid development and function by colony stimulating factors. Dev Comp Immunol 28:509–554. https://doi.org/10.1016/j.dci.2003.09.010. (PMID: 10.1016/j.dci.2003.09.01015062647)
Borriello F, Iannone R, Di Somma S et al (2017) Lipopolysaccharide-elicited TSLPR expression enriches a functionally discrete subset of human CD14(+) CD1c(+) monocytes. J Immunol 198:3426–3435. https://doi.org/10.4049/jimmunol.1601497. (PMID: 10.4049/jimmunol.160149728341671)
Kutsuna H, Suzuki K, Kamata N, Kato T, Hato F, Mizuno K, Kobayashi H, Ishii M, Kitagawa S (2004) Actin reorganization and morphological changes in human neutrophils stimulated by TNF, GM-CSF, and G-CSF: the role of MAP kinases. Am J Physiol Cell Physiol 286:C55-64. https://doi.org/10.1152/ajpcell.00131.2003. (PMID: 10.1152/ajpcell.00131.200312954601)
Sabatini M, Chavez J, Mundy GR, Bonewald LF (1990) Stimulation of tumor necrosis factor release from monocytic cells by the A375 human melanoma via granulocyte-macrophage colony-stimulating factor. Cancer Res 50:2673–2678. (PMID: 2183930)
Yousefi S, Mihalache C, Kozlowski E, Schmid I, Simon HU (2009) Viable neutrophils release mitochondrial DNA to form neutrophil extracellular traps. Cell Death Differ 16:1438–1444. https://doi.org/10.1038/cdd.2009.96. (PMID: 10.1038/cdd.2009.9619609275)
Alfaro C, Teijeira A, Onate C et al (2016) Tumor-produced interleukin-8 attracts human myeloid-derived suppressor cells and elicits extrusion of neutrophil extracellular traps (NETs). Clin Cancer Res 22:3924–3936. https://doi.org/10.1158/1078-0432.CCR-15-2463. (PMID: 10.1158/1078-0432.CCR-15-246326957562)
Ferrucci PF, Gandini S, Battaglia A et al (2015) Baseline neutrophil-to-lymphocyte ratio is associated with outcome of ipilimumab-treated metastatic melanoma patients. Br J Cancer 112:1904–1910. https://doi.org/10.1038/bjc.2015.180. (PMID: 10.1038/bjc.2015.180260104134580390)
Capone M, Giannarelli D, Mallardo D et al (2018) Baseline neutrophil-to-lymphocyte ratio (NLR) and derived NLR could predict overall survival in patients with advanced melanoma treated with nivolumab. J Immunother Cancer 6:74. https://doi.org/10.1186/s40425-018-0383-1. (PMID: 10.1186/s40425-018-0383-1300122166048712)
Scapini P, Marini O, Tecchio C, Cassatella MA (2016) Human neutrophils in the saga of cellular heterogeneity: insights and open questions. Immunol Rev 273:48–60. https://doi.org/10.1111/imr.12448. (PMID: 10.1111/imr.1244827558327)
Pal HC, Baxter RD, Hunt KM, Agarwal J, Elmets CA, Athar M, Afaq F (2015) Fisetin, a phytochemical, potentiates sorafenib-induced apoptosis and abrogates tumor growth in athymic nude mice implanted with BRAF-mutated melanoma cells. Oncotarget 6:28296–28311. https://doi.org/10.18632/oncotarget.5064. (PMID: 10.18632/oncotarget.5064262998064695061)
Rossi S, Cordella M, Tabolacci C et al (2018) TNF-alpha and metalloproteases as key players in melanoma cells aggressiveness. J Exp Clin Cancer Res 37:326. https://doi.org/10.1186/s13046-018-0982-1. (PMID: 10.1186/s13046-018-0982-1305910496309098)
Navarini-Meury AA, Conrad C (2009) Melanoma and innate immunity—active inflammation or just erroneous attraction? Melanoma as the source of leukocyte-attracting chemokines. Semin Cancer Biol 19:84–91. https://doi.org/10.1016/j.semcancer.2008.10.012. (PMID: 10.1016/j.semcancer.2008.10.01219038342)
Zhou X, Peng M, He Y, Peng J, Zhang X, Wang C, Xia X, Song W (2021) CXC chemokines as therapeutic targets and prognostic biomarkers in skin cutaneous melanoma microenvironment. Front Oncol 11:619003. https://doi.org/10.3389/fonc.2021.619003. (PMID: 10.3389/fonc.2021.619003337679877985846)
Erdrich J, Lourdault K, Judd A, Kaufman D, Gong KW, Gainsbury M, Deng N, Shon W, Essner R (2022) Four immune modulating genes in primary melanoma that predict metastatic potential. J Surg Res 279:682–691. https://doi.org/10.1016/j.jss.2022.06.031. (PMID: 10.1016/j.jss.2022.06.031359400469549765)
Filimon A, Preda IA, Boloca AF, Negroiu G (2021) Interleukin-8 in melanoma pathogenesis, prognosis and therapy: an integrated view into other neoplasms and chemokine networks. Cells. https://doi.org/10.3390/cells11010120. (PMID: 10.3390/cells11010120350116828750532)
Nozawa H, Chiu C, Hanahan D (2006) Infiltrating neutrophils mediate the initial angiogenic switch in a mouse model of multistage carcinogenesis. Proc Natl Acad Sci USA 103:12493–12498. https://doi.org/10.1073/pnas.0601807103. (PMID: 10.1073/pnas.0601807103168914101531646)
Fu X, Kassim SY, Parks WC, Heinecke JW (2001) Hypochlorous acid oxygenates the cysteine switch domain of pro-matrilysin (MMP-7). A mechanism for matrix metalloproteinase activation and atherosclerotic plaque rupture by myeloperoxidase. J Biol Chem 276:41279–41287. https://doi.org/10.1074/jbc.M106958200. (PMID: 10.1074/jbc.M10695820011533038)
Valadez-Cosmes P, Raftopoulou S, Mihalic ZN, Marsche G, Kargl J (2022) Myeloperoxidase: growing importance in cancer pathogenesis and potential drug target. Pharmacol Ther 236:108052. https://doi.org/10.1016/j.pharmthera.2021.108052. (PMID: 10.1016/j.pharmthera.2021.10805234890688)
Hendrix AY, Kheradmand F (2017) The role of matrix metalloproteinases in development, repair, and destruction of the lungs. Prog Mol Biol Transl Sci 148:1–29. https://doi.org/10.1016/bs.pmbts.2017.04.004. (PMID: 10.1016/bs.pmbts.2017.04.00428662821)
Cristinziano L, Modestino L, Loffredo S et al (2020) Anaplastic thyroid cancer cells induce the release of mitochondrial extracellular DNA traps by viable neutrophils. J Immunol 204:1362–1372. https://doi.org/10.4049/jimmunol.1900543. (PMID: 10.4049/jimmunol.190054331959732)
Demers M, Wong SL, Martinod K, Gallant M, Cabral JE, Wang Y, Wagner DD (2016) Priming of neutrophils toward NETosis promotes tumor growth. Oncoimmunology 5:e1134073. https://doi.org/10.1080/2162402X.2015.1134073. (PMID: 10.1080/2162402X.2015.1134073274679524910712)
Yousefi S, Simon HU (2016) NETosis: does it really represent nature’s “suicide bomber”? Front Immunol 7:328. https://doi.org/10.3389/fimmu.2016.00328. (PMID: 10.3389/fimmu.2016.00328276170154999959)
Gupta S, Chan DW, Zaal KJ, Kaplan MJ (2018) A high-throughput real-time imaging technique to quantify NETosis and distinguish mechanisms of cell death in human neutrophils. J Immunol 200:869–879. https://doi.org/10.4049/jimmunol.1700905. (PMID: 10.4049/jimmunol.170090529196457)
Brinkmann V, Goosmann C, Kuhn LI, Zychlinsky A (2012) Automatic quantification of in vitro NET formation. Front Immunol 3:413. https://doi.org/10.3389/fimmu.2012.00413. (PMID: 10.3389/fimmu.2012.0041323316198)
Kraaij T, Tengstrom FC, Kamerling SW, Pusey CD, Scherer HU, Toes RE, Rabelink TJ, van Kooten C, Teng YK (2016) A novel method for high-throughput detection and quantification of neutrophil extracellular traps reveals ROS-independent NET release with immune complexes. Autoimmun Rev 15:577–584. https://doi.org/10.1016/j.autrev.2016.02.018. (PMID: 10.1016/j.autrev.2016.02.01826925759)
Xiao F, Jiang Y, Wang X, Jiang W, Wang L, Zhuang X, Zheng C, Ni Y, Chen L (2018) NETosis may play a role in the pathogenesis of Hashimoto’s thyroiditis. Int J Clin Exp Pathol 11:537–547. (PMID: 319381396958043)
Nikkola J, Vihinen P, Vuoristo MS, Kellokumpu-Lehtinen P, Kahari VM, Pyrhonen S (2005) High serum levels of matrix metalloproteinase-9 and matrix metalloproteinase-1 are associated with rapid progression in patients with metastatic melanoma. Clin Cancer Res 11:5158–5166. https://doi.org/10.1158/1078-0432.CCR-04-2478. (PMID: 10.1158/1078-0432.CCR-04-247816033831)
Mancuso F, Lage S, Rasero J et al (2020) Serum markers improve current prediction of metastasis development in early-stage melanoma patients: a machine learning-based study. Mol Oncol 14:1705–1718. https://doi.org/10.1002/1878-0261.12732. (PMID: 10.1002/1878-0261.12732324850457400797)
Yousefi S, Simon D, Stojkov D, Karsonova A, Karaulov A, Simon HU (2020) In vivo evidence for extracellular DNA trap formation. Cell Death Dis 11:300. https://doi.org/10.1038/s41419-020-2497-x. (PMID: 10.1038/s41419-020-2497-x323552077193637)
Grilz E, Mauracher LM, Posch F, Konigsbrugge O, Zochbauer-Muller S, Marosi C, Lang I, Pabinger I, Ay C (2019) Citrullinated histone H3, a biomarker for neutrophil extracellular trap formation, predicts the risk of mortality in patients with cancer. Br J Haematol 186:311–320. https://doi.org/10.1111/bjh.15906. (PMID: 10.1111/bjh.15906309684006618331)
معلومات مُعتمدة: 25123 Fondazione AIRC per la ricerca sul cancro ETS; 2017M8YMR8_005 Ministero dell'Istruzione, dell'Università e della Ricerca
فهرسة مساهمة: Keywords: Melanoma; Neutrophil extracellular traps; Neutrophils; Tumor-associated neutrophil
تواريخ الأحداث: Date Created: 20230731 Date Completed: 20230911 Latest Revision: 20230921
رمز التحديث: 20231215
مُعرف محوري في PubMed: PMC10491523
DOI: 10.1007/s00262-023-03493-5
PMID: 37525065
قاعدة البيانات: MEDLINE
الوصف
تدمد:1432-0851
DOI:10.1007/s00262-023-03493-5