دورية أكاديمية

Photocaging of Carboxylic Function Bearing Biomolecules by New Thiazole Derived Fluorophore.

التفاصيل البيبلوغرافية
العنوان: Photocaging of Carboxylic Function Bearing Biomolecules by New Thiazole Derived Fluorophore.
المؤلفون: Gagarin AA; Department of Technology for Organic Synthesis, Ural Federal University, 19 Mira Str., Yekaterinburg, 620002, Russia., Minin AS; Department of Technology for Organic Synthesis, Ural Federal University, 19 Mira Str., Yekaterinburg, 620002, Russia.; M. N. Mikheev Institute of Metal Physics, Ural Branch of Russian Academy of Science, 18S. Kovalevskaya Str., Yekaterinburg, 620108, Russia., Shevyrin VA; Department of Technology for Organic Synthesis, Ural Federal University, 19 Mira Str., Yekaterinburg, 620002, Russia., Kostova IP; Department of Chemistry, Faculty of Pharmacy, Medical University-Sofia, 2 Dunav Str., Sofia, Bulgaria., Benassi E; Novosibirsk State University, Pirogova Str. 2, 630090, Novosibirsk, Russia., Belskaya NP; Department of Technology for Organic Synthesis, Ural Federal University, 19 Mira Str., Yekaterinburg, 620002, Russia.
المصدر: Chemistry (Weinheim an der Bergstrasse, Germany) [Chemistry] 2023 Oct 23; Vol. 29 (59), pp. e202302079. Date of Electronic Publication: 2023 Sep 15.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Wiley-VCH Country of Publication: Germany NLM ID: 9513783 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1521-3765 (Electronic) Linking ISSN: 09476539 NLM ISO Abbreviation: Chemistry Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Weinheim, Germany : Wiley-VCH
مستخلص: The design and synthesis of a new fluorophore containing an arylidene thiazole scaffold resulted in a compound with good photophysical characteristics. Furthermore, the thiazole C5-methyl group was easily modified into specific functional groups (CH 2 Br and CH 2 OH) for the formation of a series of photocourier molecules containing model compounds (benzoic acids), as well as prodrugs, including salicylic acid, caffeic acid, and chlorambucil via a "benzyl" linker. Spectral characteristics ( 1 H, 13 C NMR, and high-resolution mass spectra) corresponded to the proposed structures. The photocourier molecules demonstrated absorption with high values of coefficient of molar extinction, exhibited contrasting green emission, and showed good dark stability. The mechanism of the photorelease was investigated through spectral analysis, HPLC-HRMS, and supported by TD-DFT calculations. The photoheterolysis and elimination of carboxylic acids were proved to occur in the excited state, yielding a carbocation as an intermediate moiety. The fluorophore structure provided stability to the carbocation through the delocalization of the positive charge via resonance structures. Viability assessment of Vero cells using the MTT-test confirmed the weak cytotoxicity of prodrugs without irradiation and it increase upon UV-light.
(© 2023 Wiley-VCH GmbH.)
References: .
M. Kessler, R. Glatthar, B. Giese, C. G. Bochet, Org. Lett. 2003, 5, 1179-1181;.
N. Hoffmann, Chem. Rev. 2008, 108, 1052-1103;.
J. S. Zhu, M. J. Haddadin, M. J. Kurth, Acc. Chem. Res. 2019, 52, 2256-2265;.
J. Sankaranarayanan, S. Muthukrishnan, A. D. Gudmundsdottir, Adv. Phys. Org. Chem. 2009, 43, 39-77.
 .
H. Yu, J. Li, D. Wu, Z. Qiu, Y. Zhang, Chem. Soc. Rev. 2010, 39, 464-473;.
L. Sjulson, G. Miesenböck, Chem. Rev. 2008, 108, 1588-1602;.
Q. Liu, A. Deiters, Acc. Chem. Res. 2014, 47, 45-55;.
N. Ankenbruck, T. Courtney, Y. Naro, A. Deiters, Angew. Chem. Int. Ed. 2018, 57, 2768-2798;.
A. Deiters, ChemBioChem. 2010, 11, 47-53;.
J. Liu, W. Kang, W. Wang, Photochem. Photobiol. 2022, 98, 288-302.
 .
H. Li, J. C. Vaughan, Chem. Rev. 2018, 118, 9412-9454;.
P. Sengupta, S. B. van Engelenburg, J. Lippincott-Schwartz, Chem. Rev. 2014, 114, 3189-3202.
 .
N. Zivic, P. K. Kuroishi, F. Dumur, D. Gigmes, A. P. Dove, H. Sardon, Angew. Chem. Int. Ed. 2019, 58, 10410-10422;.
P. Xiao, J. Zhang, J. Zhao, M. H. Stenzel, Prog. Polym. Sci. 2017, 74, 1-33;.
P. Stegmaier, J. M. Alonso, A. del Campo, Langmuir 2008, 24, 11872-11879.
A. Jana, S. Atta, S. K. Sarkar, N. P. Singh, Tetrahedron 2010, 66, 9798-9807.
 .
W. Szymański, J. M. Beierle, H. A. V. Kistemaker, W. A. Velema, B. L. Feringa, Chem. Rev. 2013, 113, 6114-6178;.
P. Klán, T. Šolomek, C. G. Bochet, A. Blanc, R. Givens, M. Rubina, V. Popik, A. Kostikov, J. Wirz, Chem. Rev. 2013, 113, 119-191;.
C. Brieke, F. Rohrbach, A. Gottschalk, G. Mayer, A. Heckel, Angew. Chem. Int. Ed. 2012, 51, 8446-8476;.
M. J. Hansen, W. A. Velema, M. M. Lerch, W. Szymanski, B. L. Feringa, Chem. Soc. Rev. 2015, 44, 3358-3377.
J. Li, H. Kong, C. Zhu, Y. Zhang, Chem. Sci. 2020, 11, 3390-3396.
 .
A. Herrmann, Photochem. Photobiol. Sci. 2012, 11, 446-459;.
M. Abe, Y. Chitose, S. Jakkampudi, P. T. T. Thuy, Q. Lin, B. T. Van, A. Yamada, R. Oyama, M. Sasaki, C. Katan, Synthesis 2017, 49, 3337-3346;.
A. Bardhan, A. Deiters, Curr. Opin. Struct. Biol. 2019, 57, 164-175.
 .
J. A. Barltrop, P. J. Plant, P. Schofield, Chem. Commun. Lond. 1966, 822-823;.
A. Patchornik, B. Amit, R. B. Woodward, J. Am. Chem. Soc. 1970, 92, 6333-6335.
 .
X.-J. Tang, Y. Wu, R. Zhao, X. Kou, Z. Dong, W. Zhou, Z. Zhang, W. Tan, X. Fang, Angew. Chem. Int. Ed. 2020, 59, 18386-18389;.
T. Eckardt, V. Hagen, B. Schade, R. Schmidt, C. Schweitzer, J. Bendig, J. Org. Chem. 2002, 67, 703-710;.
A. Jana, B. Saha, M. Ikbal, S. K. Ghosh, N. P. Singh, Photochem. Photobiol. Sci. 2012, 11, 1558-1566.
 .
T. Slanina, P. Shrestha, E. Palao, D. Kand, J. A. Peterson, A. S. Dutton, N. Rubinstein, R. Weinstain, A. H. Winter, P. Klan, J. Am. Chem. Soc. 2017, 139, 15168-15175;.
T. Kobayashi, T. Komatsu, M. Kamiya, C. Campos, M. González-Gaitán, T. Terai, K. Hanaoka, T. Nagano, Y. Urano, J. Am. Chem. Soc. 2012, 134, 11153-11160;.
P. K. Singh, P. Majumdar, S. P. Singh, Coord. Chem. Rev. 2021, 449, 214193;.
P. Lu, K.-Y. Chung, A. Stafford, M. Kiker, K. Kafle, Z. A. Page, Polym. Chem. 2021, 12, 327-348;.
G. He, M. He, R. Wang, X. Li, H. Hu, D. Wang, Z. Wang, Y. Lu, N. Xu, J. Du, J. Fan, X. Peng, W. Sun, Angew. Chem. Int. Ed. 2023, 62, e202218768.
 .
A. Li, C. Turro, J. J. Kodanko, Chem. Commun. 2018, 54, 1280-1290;.
H. Zhang, J. Wu, J. Zhou, W. Liu, L. Liang, S. Xia, J. Yan, X. Sun, J. Photochem. Photobiol. Chem. 2022, 433, 114200;.
A. R. Sekhar, Y. Chitose, J. Janoš, S. I. Dangoor, A. Ramundo, R. Satchi-Fainaro, P. Slavíček, P. Klán, R. Weinstain, Nat. Commun. 2022, 13, 3614.
 .
R. Weinstain, T. Slanina, D. Kand, P. Klan, Chem. Rev. 2020, 120, 13135-13272;.
C. Bao, L. Zhu, Q. Lin, H. Tian, Adv. Mater. 2015, 27, 1647-1662;.
E. A. Nakad, J. Chaud, C. Morville, F. Bolze, A. Specht, Photochem. Photobiol. Sci. 2020, 19, 1122-1133;.
H. Janekova, M. Russo, U. Ziegler, P. Stacko, Angew. Chem. Int. Ed. 2022, 61, e202204391.
 .
J. A. Peterson, D. Yuan, A. H. Winter, J. Org. Chem. 2021, 86, 9781-9787;.
C. G. Bochet, Isr. J. Chem. 2021, 61, 486-495;.
I. Elamri, C. Abdellaoui, J. K. Bains, K. F. Hohmann, S. L. Gande, E. Stirnal, J. Wachtveitl, H. Schwalbe, J. Am. Chem. Soc. 2021, 143, 10596-10603.
P. Shieh, M. R. Hill, W. Zhang, S. L. Kristufek, J. A. Johnson, Chem. Rev. 2021, 121, 7059-7121.
N. P. Belskaya, I. Kostova, Z. Fan, Targets Heterocycl. Syst. 2019, 23, 116-142.
 .
A. K. Eltyshev, T. H. Dzhumaniyazov, P. O. Suntsova, A. S. Minin, V. A. Pozdina, W. Dehaen, E. Benassi, N. P. Belskaya, Dyes Pigm. 2021, 184, 108836;.
P. O. Suntsova, A. K. Eltyshev, T. A. Pospelova, P. A. Slepukhin, E. Benassi, N. P. Belskaya, Dyes Pigm. 2019, 166, 60-71.
 .
T. G. Deryabina, M. A. Demina, N. P. Belskaya, V. A. Bakulev, Russ. Chem. Bull. 2005, 54, 2880-2889;.
M. L. Kondratieva, A. V. Pepeleva, N. P. Belskaia, A. V. Koksharov, P. V. Groundwater, K. Robeyns, L. Van Meervelt, W. Dehaen, Z.-J. Fan, V. A. Bakulev, Tetrahedron 2007, 63, 3042-3048;.
T. G. Deryabina, N. P. Belskaia, M. I. Kodess, W. Dehaen, S. Toppet, V. A. Bakulev, Tetrahedron Lett. 2006, 47, 1853-1855.
 .
Y. Venkatesh, S. Nandi, M. Shee, B. Saha, A. Anoop, N. D. Pradeep Singh, Eur. J. Org. Chem. 2017, 2017, 6121-6130;.
J. A. Peterson, C. Wijesooriya, E. J. Gehrmann, K. M. Mahoney, P. P. Goswami, T. R. Albright, A. Syed, A. S. Dutton, E. A. Smith, A. H. Winter, J. Am. Chem. Soc. 2018, 140, 7343-7346.
 .
Y. Jang, T.-I. Kim, H. Kim, Y. Choi, Y. Kim, ACS Appl. Bio Mater. 2019, 2, 2567-2572;.
V. Lovrinčević, D. Vuk, I. Škorić, N. Basarić, J. Org. Chem. 2022, 87, 2489-2500.
A. Jana, S. Atta, S. K. Sarkar, N. P. Singh, Tetrahedron 2010, 66, 9798-9807.
C. Liu, Z. Qiang, F. Tian, T. Zhang, Chemosphere 2009, 76, 609-615.
 .
E. Stadler, A. Eibel, D. Fast, H. Freißmuth, C. Holly, M. Wiech, N. Mosznerb, G. Gescheidt, Photochem. Photobiol. Sci. 2018, 17, 660-669;.
“Determining Photon Flux Using Actinometry”, can be found under http://www.hepatochem.com/determine-photon-flux-using-actinometry/, 2009 (accessed 22 July 2023).
 .
J. A. Pincock, Acc. Chem. Res. 1997, 30, 43-49;.
H. E. Zimmerman, V. R. Sandel, J. Am. Chem. Soc. 1963, 85, 915-922.
 .
R. S. Givens, W. F. Oettle, J. Am. Chem. Soc. 1971, 93, 3301-3302;.
R. S. Givens, W. F. Oettle, J. Org. Chem. 1972, 37, 4325-4334;.
H. E. Zimmerman, J. Am. Chem. Soc. 1995, 117, 8988-8991;.
H. E. Zimmerman, J. Phys. Chem. A 1998, 102, 5616-5621.
E. V. Sazonova, M. S. Chesnokov, B. Zhivotovsky, G. S. Kopeina, Cell Death Discov. 2022, 8, 417.
O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, J. Appl. Crystallogr. 2009, 42, 339-341.
G. Sheldrick, Acta Crystallogr. Sect. A. 2015, 71, 3-8.
A. D. Becke, J. Chem. Phys. 1993, 98, 5648-5652.
Y. Zhao, D. G. Truhlar, Acc. Chem. Res. 2008, 41, 157-167.
T. Yanai, D. P. Tew, N. C. Handy, Chem. Phys. Lett. 2004, 393, 51-57.
J.-D. Chai, M. Head-Gordon, J. Chem. Phys. 2008, 128, 084106.
S. Grimme, S. Ehrlich, L. Goerigk, J. Comput. Chem. 2011, 32, 1456-1465.
J. Tomasi, B. Mennucci, E. Cancès, J. Mol. Struct. 1999, 464, 211-226.
A. K. Rappe, C. J. Casewit, K. S. Colwell, W. A. I. Goddard, W. M. Skiff, J. Am. Chem. Soc. 1992, 114, 10024-10035.
A. V. Marenich, C. J. Cramer, D. G. Truhlar, J. Phys. Chem. B 2009, 113, 6378-6396.
C. M. Breneman, K. B. Wiberg, J. Comput. Chem. 1990, 11, 361-373.
M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, See Also URL https://gaussian.com/g09citation/.
N. V. Slovesnova, A. S. Minin, L. T. Smolyuk, O. S. Taniya, A. N. Tsmokalyuk, G. A. Kim C, I. S. Kovalev, V. A. Pozdina, D. S. Kopchuk, A. P. Krinochkin, G. V. Zyryanov, A. Yu. Petrov, V. N. Charushin, Dyes Pigm. 2022, 204, 110410.
معلومات مُعتمدة: No. BG-RRP-2.004-0004-C01 European Union-Next Generation EU, through the National Recovery and Resilience Plan of the Republic of Bulgaria; project 20-13-00089 Russian Science Foundation
فهرسة مساهمة: Keywords: TD-DFT calculations; fluorescence; photodissociation; photoreleasing protecting groups; thiazole
تواريخ الأحداث: Date Created: 20230802 Latest Revision: 20231024
رمز التحديث: 20231215
DOI: 10.1002/chem.202302079
PMID: 37530503
قاعدة البيانات: MEDLINE
الوصف
تدمد:1521-3765
DOI:10.1002/chem.202302079