دورية أكاديمية

Authigenic mineral phases as a driver of the upper-ocean iron cycle.

التفاصيل البيبلوغرافية
العنوان: Authigenic mineral phases as a driver of the upper-ocean iron cycle.
المؤلفون: Tagliabue A; School of Environmental Sciences, University of Liverpool, Liverpool, UK. a.tagliabue@liverpool.ac.uk., Buck KN; College of Marine Science, University of South Florida, St. Petersburg, FL, USA.; College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, OR, USA., Sofen LE; Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, USA., Twining BS; Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, USA., Aumont O; LOCEAN, IRD-CNRS-Sorbonne Université-MNHN, IPSL, Paris, France., Boyd PW; Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia., Caprara S; College of Marine Science, University of South Florida, St. Petersburg, FL, USA., Homoky WB; School of Earth and Environment, University of Leeds, Leeds, UK., Johnson R; Bermuda Institute of Ocean Sciences, St. George's, Bermuda., König D; School of Environmental Sciences, University of Liverpool, Liverpool, UK.; Department of Oceanography, School of Ocean and Earth Science and Technology, University of Hawai'i at Mānoa, Honolulu, HI, USA., Ohnemus DC; Skidaway Institute of Oceanography, University of Georgia, Department of Marine Sciences, Savannah, GA, USA., Sohst B; Department of Ocean and Earth Sciences, Old Dominion University, Norfolk, VA, USA., Sedwick P; Department of Ocean and Earth Sciences, Old Dominion University, Norfolk, VA, USA.
المصدر: Nature [Nature] 2023 Aug; Vol. 620 (7972), pp. 104-109. Date of Electronic Publication: 2023 Aug 02.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Nature Publishing Group Country of Publication: England NLM ID: 0410462 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1476-4687 (Electronic) Linking ISSN: 00280836 NLM ISO Abbreviation: Nature Subsets: MEDLINE
أسماء مطبوعة: Publication: Basingstoke : Nature Publishing Group
Original Publication: London, Macmillan Journals ltd.
مواضيع طبية MeSH: Iron*/analysis , Iron*/chemistry , Iron*/metabolism , Minerals*/analysis , Minerals*/chemistry , Minerals*/metabolism , Seawater*/analysis , Seawater*/chemistry, Ligands ; Carbon Cycle ; Datasets as Topic ; Atlantic Ocean ; Bermuda ; Time Factors ; Seasons ; Solutions/chemistry ; Internationality
مستخلص: Iron is important in regulating the ocean carbon cycle 1 . Although several dissolved and particulate species participate in oceanic iron cycling, current understanding emphasizes the importance of complexation by organic ligands in stabilizing oceanic dissolved iron concentrations 2-6 . However, it is difficult to reconcile this view of ligands as a primary control on dissolved iron cycling with the observed size partitioning of dissolved iron species, inefficient dissolved iron regeneration at depth or the potential importance of authigenic iron phases in particulate iron observational datasets 7-12 . Here we present a new dissolved iron, ligand and particulate iron seasonal dataset from the Bermuda Atlantic Time-series Study (BATS) region. We find that upper-ocean dissolved iron dynamics were decoupled from those of ligands, which necessitates a process by which dissolved iron escapes ligand stabilization to generate a reservoir of authigenic iron particles that settle to depth. When this 'colloidal shunt' mechanism was implemented in a global-scale biogeochemical model, it reproduced both seasonal iron-cycle dynamics observations and independent global datasets when previous models failed 13-15 . Overall, we argue that the turnover of authigenic particulate iron phases must be considered alongside biological activity and ligands in controlling ocean-dissolved iron distributions and the coupling between dissolved and particulate iron pools.
(© 2023. The Author(s), under exclusive licence to Springer Nature Limited.)
References: Tagliabue, A. et al. The integral role of iron in ocean biogeochemistry. Nature 543, 51–59 (2017). (PMID: 2825206610.1038/nature21058)
Gledhill, M. & Buck, K. N. The organic complexation of iron in the marine environment: a review. Front. Microbiol. 3, 69 (2012). (PMID: 22403574328926810.3389/fmicb.2012.00069)
Johnson, K. S., Gordon, R. M. & Coale, K. H. What controls dissolved iron concentrations in the world ocean? Mar. Chem. 57, 137–161 (1997). (PMID: 10.1016/S0304-4203(97)00043-1)
Lauderdale, J. M., Braakman, R., Forget, G., Dutkiewicz, S. & Follows, M. J. Microbial feedbacks optimize ocean iron availability. Proc. Natl Acad. Sci. 117, 4842–4849 (2020). (PMID: 32071221706069610.1073/pnas.1917277117)
Parekh, P., Follows, M. J. & Boyle, E. A. Decoupling of iron and phosphate in the global ocean. Glob. Biogeochem. Cycles 19, GB2020 (2005). (PMID: 10.1029/2004GB002280)
Whitby, H. et al. A call for refining the role of humic-like substances in the oceanic iron cycle. Sci. Rep. 10, 6144 (2020). (PMID: 32273548714584810.1038/s41598-020-62266-7)
Boyd, P. W., Ellwood, M. J., Tagliabue, A. & Twining, B. S. Biotic and abiotic retention, recycling and remineralization of metals in the ocean. Nat. Geosci. 10, 167–173 (2017). (PMID: 10.1038/ngeo2876)
Frew, R. D. et al. Particulate iron dynamics during FeCycle in subantarctic waters southeast of New Zealand. Glob. Biogeochem. Cycles 20, GB1S93 (2006). (PMID: 10.1029/2005GB002558)
Ohnemus, D. C., Torrie, R. & Twining, B. S. Exposing the distributions and elemental associations of scavenged particulate phases in the ocean using basin‐scale multi‐element data sets. Glob. Biogeochem. Cycles 33, 725–748 (2019). (PMID: 10.1029/2018GB006145)
Tagliabue, A. et al. The interplay between regeneration and scavenging fluxes drives ocean iron cycling. Nat. Commun. 10, 4960 (2019). (PMID: 31673108682349710.1038/s41467-019-12775-5)
Cullen, J. T., Bergquist, B. A. & Moffett, J. W. Thermodynamic characterization of the partitioning of iron between soluble and colloidal species in the Atlantic Ocean. Mar. Chem. 98, 295–303 (2006). (PMID: 10.1016/j.marchem.2005.10.007)
Fitzsimmons, J. N., Bundy, R. M., Al-Subiai, S. N., Barbeau, K. A. & Boyle, E. A. The composition of dissolved iron in the dusty surface ocean: an exploration using size-fractionated iron-binding ligands. Mar. Chem. 173, 125–135 (2015). (PMID: 10.1016/j.marchem.2014.09.002)
Tagliabue, A. et al. How well do global ocean biogeochemistry models simulate dissolved iron distributions? Glob. Biogeochem. Cycles 30, 149–174 (2016). (PMID: 10.1002/2015GB005289)
Somes, C. J. et al. Constraining global marine iron sources and ligand‐mediated scavenging fluxes with GEOTRACES dissolved iron measurements in an ocean biogeochemical model. Glob. Biogeochem. Cycles 35, e2021GB006948 (2021). (PMID: 10.1029/2021GB006948)
Sedwick, P. N. et al. Dissolved iron in the Bermuda region of the subtropical North Atlantic Ocean: seasonal dynamics, mesoscale variability, and physicochemical speciation. Mar. Chem. 219, 103748 (2020). (PMID: 10.1016/j.marchem.2019.103748)
Martinez-Garcia, A. et al. Iron fertilization of the Subantarctic Ocean during the last ice age. Science 343, 1347–1350 (2014). (PMID: 2465303110.1126/science.1246848)
Raven, J. A., Evans, M. C. W. & Korb, R. E. The role of trace metals in photosynthetic electron transport in O 2 -evolving organisms. Photosynth. Res. 60, 111–150 (1999). (PMID: 10.1023/A:1006282714942)
Wade, J., Byrne, D. J., Ballentine, C. J. & Drakesmith, H. Temporal variation of planetary iron as a driver of evolution. Proc. Natl Acad. Sci. 118, e2109865118 (2021). (PMID: 34873026871374710.1073/pnas.2109865118)
Tagliabue, A., Aumont, O. & Bopp, L. The impact of different external sources of iron on the global carbon cycle. Geophys. Res. Lett. 41, 920–926 (2014). (PMID: 10.1002/2013GL059059)
Buck, K. N., Sedwick, P. N., Sohst, B. & Carlson, C. A. Organic complexation of iron in the eastern tropical South Pacific: results from US GEOTRACES Eastern Pacific Zonal Transect (GEOTRACES cruise GP16). Mar. Chem. 201, 229–241 (2018). (PMID: 10.1016/j.marchem.2017.11.007)
Buck, K. N., Sohst, B. & Sedwick, P. N. The organic complexation of dissolved iron along the U.S. GEOTRACES (GA03) North Atlantic Section. Deep Sea Res. II Top. Stud. Oceanogr. 116, 152–165 (2015). (PMID: 10.1016/j.dsr2.2014.11.016)
Gerringa, L. J. A., Rijkenberg, M. J. A., Schoemann, V., Laan, P. & de Baar, H. J. W. Organic complexation of iron in the West Atlantic Ocean. Mar. Chem. 177, 434–446 (2015). (PMID: 10.1016/j.marchem.2015.04.007)
Bressac, M. et al. Resupply of mesopelagic dissolved iron controlled by particulate iron composition. Nat. Geosci. 12, 995–1000 (2019). (PMID: 10.1038/s41561-019-0476-6)
Lamborg, C. H. et al. The flux of bio- and lithogenic material associated with sinking particles in the mesopelagic “twilight zone” of the northwest and North Central Pacific Ocean. Deep Sea Res. II Top. Stud. Oceanogr. 55, 1540–1563 (2008). (PMID: 10.1016/j.dsr2.2008.04.011)
Twining, B. S. et al. Differential remineralization of major and trace elements in sinking diatoms. Limnol. Oceanogr. 59, 689–704 (2014). (PMID: 10.4319/lo.2014.59.3.0689)
Tagliabue, A. et al. Persistent uncertainties in ocean net primary production climate change projections at regional scales raise challenges for assessing impacts on ecosystem services. Front. Clim. 3, 738224 (2021). (PMID: 10.3389/fclim.2021.738224)
Gunnars, A., Blomqvist, S., Johansson, P. & Andersson, C. Formation of Fe(III) oxyhydroxide colloids in freshwater and brackish seawater, with incorporation of phosphate and calcium. Geochim. Cosmochim. Acta 66, 745–758 (2002). (PMID: 10.1016/S0016-7037(01)00818-3)
Feely, R. A., Trefry, J. H., Massoth, G. J. & Metz, S. A comparison of the scavenging of phosphorus and arsenic from seawater by hydrothermal iron oxyhydroxides in the Atlantic and Pacific Oceans. Deep Sea Res. A Oceanogr. Res. Pap. 38, 617–623 (1991). (PMID: 10.1016/0198-0149(91)90001-V)
Homoky, W. B. et al. Iron colloids dominate sedimentary supply to the ocean interior. Proc. Natl Acad. Sci. 118, e2016078118 (2021). (PMID: 3377192210.1073/pnas.2016078118)
Homoky, W. B. et al. Iron and manganese diagenesis in deep sea volcanogenic sediments and the origins of pore water colloids. Geochim. Cosmochim. Acta 75, 5032–5048 (2011). (PMID: 10.1016/j.gca.2011.06.019)
Fitzsimmons, J. N. & Boyle, E. A. Both soluble and colloidal iron phases control dissolved iron variability in the tropical North Atlantic Ocean. Geochim. Cosmochim. Acta 125, 539–550 (2014). (PMID: 10.1016/j.gca.2013.10.032)
Kunde, K. et al. Iron distribution in the subtropical North Atlantic: the pivotal role of colloidal iron. Glob. Biogeochem. Cycles 33, 1532–1547 (2019). (PMID: 10.1029/2019GB006326)
Marsay, C. M., Barrett, P. M., McGillicuddy, D. J. & Sedwick, P. N. Distributions, sources, and transformations of dissolved and particulate iron on the Ross Sea continental shelf during summer. J. Geophys. Res. Oceans 122, 6371–6393 (2017). (PMID: 10.1002/2017JC013068)
Conway, T. M. et al. Tracing and constraining anthropogenic aerosol iron fluxes to the North Atlantic Ocean using iron isotopes. Nat. Commun. 10, 2628 (2019). (PMID: 31201307657076610.1038/s41467-019-10457-w)
Tang, W. et al. Widespread phytoplankton blooms triggered by 2019–2020 Australian wildfires. Nature 597, 370–375 (2021). (PMID: 3452670610.1038/s41586-021-03805-8)
Boyd, P. W., Mackie, D. S. & Hunter, K. A. Aerosol iron deposition to the surface ocean – modes of iron supply and biological responses. Mar. Chem. 120, 128–143 (2010). (PMID: 10.1016/j.marchem.2009.01.008)
Bowie, A. R. et al. Biogeochemical iron budgets of the Southern Ocean south of Australia: decoupling of iron and nutrient cycles in the subantarctic zone by the summertime supply. Glob. Biogeochem. Cycles 23, GB4034 (2009). (PMID: 10.1029/2009GB003500)
Wu, J. & Boyle, E. Iron in the Sargasso Sea: implications for the processes controlling dissolved Fe distribution in the ocean. Glob. Biogeochem. Cycles 16, 33-1–33-8 (2002). (PMID: 10.1029/2001GB001453)
Rijkenberg, M. J. et al. The distribution of dissolved iron in the West Atlantic Ocean. PLoS One 9, e101323 (2014). (PMID: 24978190407630910.1371/journal.pone.0101323)
Black, E. E. et al. Ironing out Fe residence time in the dynamic upper ocean. Glob. Biogeochem. Cycles 34, e2020GB006592 (2020). (PMID: 10.1029/2020GB006592)
Wagener, T., Guieu, C. & Leblond, N. Effects of dust deposition on iron cycle in the surface Mediterranean Sea: results from a mesocosm seeding experiment. Biogeosciences 7, 3769–3781 (2010). (PMID: 10.5194/bg-7-3769-2010)
Honeyman, B. D. & Santschi, P. H. A Brownian-pumping model for oceanic trace metal scavenging: evidence from Th isotopes. J. Mar. Res. 47, 951–992 (1989). (PMID: 10.1357/002224089785076091)
Wu, J., Boyle, E., Sunda, W. & Wen, L. S. Soluble and colloidal iron in the oligotrophic North Atlantic and North Pacific. Science 293, 847–849 (2001). (PMID: 1148608410.1126/science.1059251)
Völker, C. & Tagliabue, A. Modeling organic iron-binding ligands in a three-dimensional biogeochemical ocean model. Mar. Chem. 173, 67–77 (2015). (PMID: 10.1016/j.marchem.2014.11.008)
Misumi, K. et al. Slowly sinking particles underlie dissolved iron transport across the Pacific Ocean. Glob. Biogeochem. Cycles 35, e2020GB006823 (2021). (PMID: 10.1029/2020GB006823)
Seferian, R. et al. Tracking improvement in simulated marine biogeochemistry between CMIP5 and CMIP6. Curr. Clim. Change Rep. 6, 95–119 (2020). (PMID: 32837849743155310.1007/s40641-020-00160-0)
Raiswell, R., Benning, L. G., Tranter, M. & Tulaczyk, S. Bioavailable iron in the Southern Ocean: the significance of the iceberg conveyor belt. Geochem. Trans. 9, 7 (2008). (PMID: 18513396244073510.1186/1467-4866-9-7)
von der Heyden, B. P., Roychoudhury, A. N., Mtshali, T. N., Tyliszczak, T. & Myneni, S. C. Chemically and geographically distinct solid-phase iron pools in the Southern Ocean. Science 338, 1199–1201 (2012). (PMID: 2319753110.1126/science.1227504)
Curti, L. et al. Carboxyl-richness controls organic carbon preservation during coprecipitation with iron (oxyhydr)oxides in the natural environment. Commun. Earth Environ. 2, 229 (2021). (PMID: 10.1038/s43247-021-00301-9)
Rauschenberg, S. & Twining, B. S. Evaluation of approaches to estimate biogenic particulate trace metals in the ocean. Mar. Chem. 171, 67–77 (2015). (PMID: 10.1016/j.marchem.2015.01.004)
Twining, B. S. et al. Taxonomic and nutrient controls on phytoplankton iron quotas in the ocean. Limnol. Oceanogr. Lett. 6, 96–106 (2021). (PMID: 10.1002/lol2.10179)
Rudnick, R. L. & Gao, S. in Treatise on Geochemistry, Vol. 3 (eds Holland, H. D. & Turekian, K. K.) 1–64 (Elsevier, 2003).
Shelley, R. U., Morton, P. L. & Landing, W. M. Elemental ratios and enrichment factors in aerosols from the US-GEOTRACES North Atlantic transects. Deep Sea Res. II Top. Stud. Oceanogr. 116, 262–272 (2015). (PMID: 10.1016/j.dsr2.2014.12.005)
GEOTRACES Intermediate Data Product Group. The GEOTRACES Intermediate Data Product 2021 (IDP2021). https://doi.org/10.5285/cf2d9ba9-d51d-3b7c-e053-8486abc0f5fd (NERC EDS British Oceanographic Data Centre NOC, 2021).
Kwiatkowski, L., Aumont, O., Bopp, L. & Ciais, P. The impact of variable phytoplankton stoichiometry on projections of primary production, food quality, and carbon uptake in the global ocean. Glob. Biogeochem. Cycles 32, 516–528 (2018). (PMID: 10.1002/2017GB005799)
Ye, Y. & Völker, C. On the role of dust-deposited lithogenic particles for iron cycling in the tropical and subtropical Atlantic. Glob. Biogeochem. Cycles 31, 1543–1558 (2017). (PMID: 10.1002/2017GB005663)
Aumont, O., Ethé, C., Tagliabue, A., Bopp, L. & Gehlen, M. PISCES-v2: an ocean biogeochemical model for carbon and ecosystem studies. Geosci. Model Dev. 8, 2465–2513 (2015). (PMID: 10.5194/gmd-8-2465-2015)
Hamilton, D. S. et al. Recent (1980 to 2015) trends and variability in daily‐to‐interannual soluble iron deposition from dust, fire, and anthropogenic sources. Geophys. Res. Lett. 47, e2020GL089688 (2020). (PMID: 10.1029/2020GL089688)
Liu, X. & Millero, F. J. The solubility of iron in seawater. Mar. Chem. 77, 43–54 (2002). (PMID: 10.1016/S0304-4203(01)00074-3)
المشرفين على المادة: E1UOL152H7 (Iron)
0 (Ligands)
0 (Minerals)
0 (Solutions)
تواريخ الأحداث: Date Created: 20230802 Date Completed: 20230804 Latest Revision: 20230804
رمز التحديث: 20240628
DOI: 10.1038/s41586-023-06210-5
PMID: 37532817
قاعدة البيانات: MEDLINE
الوصف
تدمد:1476-4687
DOI:10.1038/s41586-023-06210-5