دورية أكاديمية

Long-term organic carbon preservation enhanced by iron and manganese.

التفاصيل البيبلوغرافية
العنوان: Long-term organic carbon preservation enhanced by iron and manganese.
المؤلفون: Moore OW; School of Earth and Environment, University of Leeds, Leeds, UK. o.moore@leeds.ac.uk., Curti L; School of Earth and Environment, University of Leeds, Leeds, UK., Woulds C; School of Geography, University of Leeds, Leeds, UK., Bradley JA; School of Geography, Queen Mary University of London, London, UK.; Department of Geochemistry, GFZ, German Research Centre for Geosciences, Potsdam, Germany., Babakhani P; School of Earth and Environment, University of Leeds, Leeds, UK., Mills BJW; School of Earth and Environment, University of Leeds, Leeds, UK., Homoky WB; School of Earth and Environment, University of Leeds, Leeds, UK., Xiao KQ; School of Earth and Environment, University of Leeds, Leeds, UK.; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China., Bray AW; School of Earth and Environment, University of Leeds, Leeds, UK., Fisher BJ; School of Earth and Environment, University of Leeds, Leeds, UK.; School of GeoSciences, University of Edinburgh, Edinburgh, UK., Kazemian M; Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, UK., Kaulich B; Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, UK., Dale AW; GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany., Peacock CL; School of Earth and Environment, University of Leeds, Leeds, UK.
المصدر: Nature [Nature] 2023 Sep; Vol. 621 (7978), pp. 312-317. Date of Electronic Publication: 2023 Aug 02.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Nature Publishing Group Country of Publication: England NLM ID: 0410462 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1476-4687 (Electronic) Linking ISSN: 00280836 NLM ISO Abbreviation: Nature Subsets: PubMed not MEDLINE; MEDLINE
أسماء مطبوعة: Publication: Basingstoke : Nature Publishing Group
Original Publication: London, Macmillan Journals ltd.
مستخلص: The balance between degradation and preservation of sedimentary organic carbon (OC) is important for global carbon and oxygen cycles 1 . The relative importance of different mechanisms and environmental conditions contributing to marine sedimentary OC preservation, however, remains unclear 2-8 . Simple organic molecules can be geopolymerized into recalcitrant forms by means of the Maillard reaction 5 , although reaction kinetics at marine sedimentary temperatures are thought to be slow 9,10 . More recent work in terrestrial systems suggests that the reaction can be catalysed by manganese minerals 11-13 , but the potential for the promotion of geopolymerized OC formation at marine sedimentary temperatures is uncertain. Here we present incubation experiments and find that iron and manganese ions and minerals abiotically catalyse the Maillard reaction by up to two orders of magnitude at temperatures relevant to continental margins where most preservation occurs 4 . Furthermore, the chemical signature of the reaction products closely resembles dissolved and total OC found in continental margin sediments globally. With the aid of a pore-water model 14 , we estimate that iron- and manganese-catalysed transformation of simple organic molecules into complex macromolecules might generate on the order of approximately 4.1 Tg C yr -1 for preservation in marine sediments. In the context of perhaps only about 63 Tg C yr -1 variation in sedimentary organic preservation over the past 300 million years 6 , we propose that variable iron and manganese inputs to the ocean could exert a substantial but hitherto unexplored impact on global OC preservation over geological time.
(© 2023. The Author(s).)
References: Lenton, T., Daines, S. & Mills, B. COPSE reloaded: an improved model of biogeochemical cycling over Phanerozoic time. Earth Sci. Rev. 178, 1–28 (2018). (PMID: 10.1016/j.earscirev.2017.12.004)
Arndt, S. et al. Quantifying the degradation of organic matter in marine sediments: a review and synthesis. Earth Sci. Rev. 123, 53–86 (2013). (PMID: 10.1016/j.earscirev.2013.02.008)
Hartnett, H., Keil, R., Hedges, J. & Devol, A. Influence of oxygen exposure time on organic carbon preservation in continental margin sediments. Nature 391, 572–575 (1998). (PMID: 10.1038/35351)
Hedges, J. I. & Keil, R. G. Sedimentary organic matter preservation: an assessment and speculative synthesis. Mar. Chem. 49, 81–115 (1995). (PMID: 10.1016/0304-4203(95)00008-F)
Hedges, J. The formation and clay mineral reactions of melanoidins. Geochim. Cosmochim. Acta 42, 69–76 (1978). (PMID: 10.1016/0016-7037(78)90218-1)
Berner, R. & Canfield, D. A new model for atmospheric oxygen over Phanerozoic time. Am. J. Sci. 289, 333–361 (1989). (PMID: 1153977610.2475/ajs.289.4.333)
Burdige, D. Preservation of organic matter in marine sediments: controls, mechanisms, and an imbalance in sediment organic carbon budgets? Chem. Rev. 107, 467–485 (2007). (PMID: 1724973610.1021/cr050347q)
Mayer, L. Surface area control of organic carbon accumulation in continental shelf sediments. Geochim. Cosmochim. Acta 58, 1271–1284 (1994). (PMID: 10.1016/0016-7037(94)90381-6)
Alperin, M., Albert, D. & Martens, C. Seasonal variations in production and consumption rates of dissolved organic carbon in an organic-rich coastal sediment. Geochim. Cosmochim. Acta 58, 4909–4930 (1994). (PMID: 10.1016/0016-7037(94)90221-6)
Burdige, D. Geochemistry of Marine Sediments (Princeton Univ. Press, 2006).
Jokic, A., Frenkel, A. I., Vairavamurthy, M. A. & Huang, P. M. Birnessite catalysis of the Maillard reaction: its significance in natural humification. Geophys. Res. Lett. 28, 3899–3902 (2001). (PMID: 10.1029/2001GL013839)
Hardie, A., Dynes, J., Kozaka, L. & Huang, P. in Molecular Environmental Soil Science at the Interfaces in the Earth’s Critical Zone (eds Xu J. & Huang P.M.) 26–28 (Springer, 2010).
Johnson, K. et al. Towards a mechanistic understanding of carbon stabilization in manganese oxides. Nat. Commun. 6, 7628 (2015). (PMID: 2619462510.1038/ncomms8628)
LaRowe, D., Burwicz, E., Arndt, S., Dale, A. & Amend, J. Temperature and volume of global marine sediments. Geology 45, 275–278 (2017). (PMID: 10.1130/G38601.1)
Maillard, L. Action of amino acids on sugars. Formation of melanoidins in a methodical way. Compte-Rendu de l’Academie des Sciences 154, 66–68 (1912).
Wang, H.-Y., Qian, H. & Yao, W.-R. Melanoidins produced by the Maillard reaction: structure and biological activity. Food Chem. 128, 573–584 (2011). (PMID: 10.1016/j.foodchem.2011.03.075)
Arnosti, C. Microbial extracellular enzymes and the marine carbon cycle. Annu. Rev. Mar. Sci. 3, 401–425 (2011). (PMID: 10.1146/annurev-marine-120709-142731)
Hedges, J. in Humic Substances and their Role in the Environment (eds Frimmel, F. H. & Christman, R. F.) 45–58 (John Wiley & Sons, 1988).
Lalonde, K., Mucci, A., Ouellet, A. & Gélinas, Y. Preservation of organic matter in sediments promoted by iron. Nature 483, 198 (2012). (PMID: 2239855910.1038/nature10855)
Homoky, W. et al. Iron colloids dominate sedimentary supply to the ocean interior. Proc. Natl Acad. Sci. 118, e2016078118 (2021). (PMID: 33771922802065410.1073/pnas.2016078118)
Kleber, M. et al. Dynamic interactions at the mineral–organic matter interface. Nat. Rev. Earth Environ. 2, 402–421 (2021).
Collins, M., Bishop, A. & Farrimond, P. Sorption by mineral surfaces: rebirth of the classical condensation pathway for kerogen formation? Geochim. Cosmochim. Acta 59, 2387–2391 (1995). (PMID: 10.1016/0016-7037(95)00114-F)
Curti, L. et al. Carboxyl-richness controls organic carbon preservation during coprecipitation with iron (oxyhydr) oxides in the natural environment. Commun. Earth Environ. 2, 229 (2021). (PMID: 10.1038/s43247-021-00301-9)
Huang, P. in Handbook of Soil Science (ed. Sumner, M. E.) B303–B327 (CRC Press, 2000).
Vairavamurthy, A. & Wang, S. Organic nitrogen in geomacromolecules: insights on speciation and transformation with K-edge XANES spectroscopy. Environ. Sci. Technol. 36, 3050–3056 (2002). (PMID: 1214148110.1021/es0155478)
Brandes, J. et al. Examining marine particulate organic matter at sub-micron scales using scanning transmission X-ray microscopy and carbon X-ray absorption near edge structure spectroscopy. Mar. Chem. 92, 107–121 (2004). (PMID: 10.1016/j.marchem.2004.06.020)
Mouvenchery, Y., Kučerík, J., Diehl, D. & Schaumann, G. Cation-mediated cross-linking in natural organic matter: a review. Rev. Environ. Sci. Biotechnol. 11, 41–54 (2012). (PMID: 10.1007/s11157-011-9258-3)
Hrynets, Y., Bhattacherjee, A., Ndagijimana, M., Hincapie Martinez, D. & Betti, M. Iron (Fe2+)-catalyzed glucosamine browning at 50 °C: identification and quantification of major flavor compounds for antibacterial activity. J. Agric. Food Chem. 64, 3266–3275 (2016). (PMID: 2704300710.1021/acs.jafc.6b00761)
Cornell, R. & Schwertmann, U. The Iron Oxides: Structure, Properties, Reactions, Occurrences and Uses (John Wiley & Sons, 2003).
Hemingway, J. et al. Mineral protection regulates long-term global preservation of natural organic carbon. Nature 570, 228–231 (2019). (PMID: 3119001310.1038/s41586-019-1280-6)
Appelo, C. & Postma, D. A consistent model for surface complexation on birnessite (−MnO 2 ) and its application to a column experiment. Geochim. Cosmochim. Acta 63, 3039–3048 (1999). (PMID: 10.1016/S0016-7037(99)00231-8)
Henrichs, S. Sedimentary organic matter preservation: an assessment and speculative synthesis—a comment. Mar. Chem. 49, 127–136 (1995). (PMID: 10.1016/0304-4203(95)00012-G)
Wagai, R., Kajiura, M. & Asano, M. Iron and aluminum association with microbially processed organic matter via meso-density aggregate formation across soils: organo-metallic glue hypothesis. Soil 6, 597–627 (2020). (PMID: 10.5194/soil-6-597-2020)
Joint IHO-IOC Guiding Committee for GEBCO. B-6 Standardization of Undersea Feature Names edn 4.2.0 2–12 (International Hydrographic Organization, 2008).
Sarmiento, J. & Gruber, N. Ocean Biogeochemical Dynamics (Princeton Univ. Press, 2006).
Berner, R. Biogeochemical cycles of carbon and sulfur and their effect on atmospheric oxygen over Phanerozoic time. Global Planet. Change 1, 97–122 (1989). (PMID: 10.1016/0921-8181(89)90018-0)
Glud, R. N. Oxygen dynamics of marine sediments. Mar. Biol. Res. 4, 243–289 (2008). (PMID: 10.1080/17451000801888726)
Berner, R. The Phanerozoic Carbon Cycle: CO 2 and O 2 (Oxford Univ. Press on Demand, 2004).
Hay, W. et al. Evaporites and the salinity of the ocean during the Phanerozoic: implications for climate, ocean circulation and life. Palaeogeogr. Palaeoclimatol. Palaeoecol. 240, 3–46 (2006). (PMID: 10.1016/j.palaeo.2006.03.044)
Merdith, A., Williams, S., Brune, S., Collins, A. & Müller, R. Rift and plate boundary evolution across two supercontinent cycles. Global Planet. Change 173, 1–14 (2019). (PMID: 10.1016/j.gloplacha.2018.11.006)
Mills, B., Donnadieu, Y. & Goddéris, Y. Spatial continuous integration of Phanerozoic global biogeochemistry and climate. Gondwana Res. 100, 73–86 (2021).
Poulton, S. & Canfield, D. Ferruginous conditions: a dominant feature of the ocean through Earth’s history. Elements 7, 107–112 (2011). (PMID: 10.2113/gselements.7.2.107)
Laakso, T. & Schrag, D. The role of authigenic carbonate in Neoproterozoic carbon isotope excursions. Earth Planet. Sci. Lett. 549, 116534 (2020). (PMID: 10.1016/j.epsl.2020.116534)
Schwertmann, U. & Cornell, R.M. Iron Oxides in the Laboratory: Preparation and Characterization (John Wiley & Sons, 2008).
Villalobos, M., Toner, B., Bargar, J. & Sposito, G. Characterization of the manganese oxide produced by Pseudomonas putida strain MnB1. Geochim. Cosmochim. Acta 67, 2649–2662 (2003). (PMID: 10.1016/S0016-7037(03)00217-5)
Pereira, R. et al. Mobilization of optically invisible dissolved organic matter in response to rainstorm events in a tropical forest headwater river. Geophys. Res. Lett. 41, 1202–1208 (2014). (PMID: 10.1002/2013GL058658)
Trojahn, S. et al. The scientific evolution of riverine invisible dissolved organic matter. in 29th International Meeting on Organic Geochemistry 1–2 (European Association of Organic Geochemists, 2019).
Jiang, S., Shi, Y., Li, M., Xiong, L. & Sun, Q. Characterization of Maillard reaction products micro/nano-particles present in fermented soybean sauce and vinegar. Sci. Rep. 9, 11285 (2019). (PMID: 31375781667781310.1038/s41598-019-47800-6)
Kumar, N., Pacheco, J., Noël, V., Dublet, G. & Brown, G. Sulfidation mechanisms of Fe (III)-(oxyhydr)oxide nanoparticles: a spectroscopic study. Environ. Sci. Nano 5, 1012–1026 (2018). (PMID: 10.1039/C7EN01109A)
Nichol, I. & Phillips, R. Measurements of spectral reflectivity of manganese oxides. Mineral. Mag. 35, 200–213 (1965).
Manskaya, S. & Drozdova, T. Geochemistry of Organic Substances: International Series of Monographs in Earth Sciences Vol. 28 (Elsevier, 2013).
Enders, C. & Theis, K. Melanoidins and their relationship to the humic acids. Brennstoff. Chem. 19, 360–365 (1938).
Komada, T., Anderson, M. & Dorfmeier, C. Carbonate removal from coastal sediments for the determination of organic carbon and its isotopic signatures, δ13C and Δ14C: comparison of fumigation and direct acidification by hydrochloric acid. Limnol. Oceanogr-Meth. 6, 254–262 (2008). (PMID: 10.4319/lom.2008.6.254)
Weast, R. C., Lide, D., Astle, M. & Beyer, W. CRC Handbook of Chemistry and Physics 70th edn (CRC Press, 1989).
Zubavichus, Y., Shaporenko, A., Grunze, M. & Zharnikov, M. Innershell absorption spectroscopy of amino acids at all relevant absorption edges. J. Phys. Chem. A 109, 6998–7000 (2005). (PMID: 1683406210.1021/jp0535846)
Lee, T. R., Wood, W. T. & Phrampus, B. J. A machine learning (kNN) approach to predicting global seafloor total organic carbon. Global Biogeochem. Cycles 33, 37–46 (2019). (PMID: 10.1029/2018GB005992)
Hantschel, T. & Kauerauf, A. Fundamentals of Basin and Petroleum Systems Modeling (Springer Science & Business Media, 2009).
Bradley, J. A. et al. Widespread energy limitation to life in global subseafloor sediments. Sci. Adv. 6, eaba0697 (2020). (PMID: 32821818740638210.1126/sciadv.aba0697)
Burwicz, E. B., Rüpke, L. H. & Wallmann, K. Estimation of the global amount of submarine gas hydrates formed via microbial methane formation based on numerical reaction-transport modeling and a novel parameterization of Holocene sedimentation. Geochim. Cosmochim. Acta 75, 4562–4576 (2011). (PMID: 10.1016/j.gca.2011.05.029)
Clark, M. M. Transport Modeling for Environmental Engineers and Scientists (John Wiley & Sons, 2011).
Van Boekel, M. Kinetic aspects of the Maillard reaction: a critical review. Food/Nahrung 45, 150–159 (2001). (PMID: 1145578010.1002/1521-3803(20010601)45:3<150::AID-FOOD150>3.0.CO;2-9)
Middelburg, J., Soetaert, K. & Herman, P. Empirical relationships for use in global diagenetic models. Deep Sea Res. Part I 44, 327–344 (1997). (PMID: 10.1016/S0967-0637(96)00101-X)
Meile, C. & Cappellen, P. Global estimates of enhanced solute transport in marine sediments. Limnol. Oceanogr. 48, 777–786 (2003). (PMID: 10.4319/lo.2003.48.2.0777)
تواريخ الأحداث: Date Created: 20230802 Date Completed: 20230915 Latest Revision: 20230921
رمز التحديث: 20240628
مُعرف محوري في PubMed: PMC10499600
DOI: 10.1038/s41586-023-06325-9
PMID: 37532941
قاعدة البيانات: MEDLINE
الوصف
تدمد:1476-4687
DOI:10.1038/s41586-023-06325-9