دورية أكاديمية

Influence of Slco2b1-knockout and SLCO2B1-humanization on coproporphyrin I and III levels in rats.

التفاصيل البيبلوغرافية
العنوان: Influence of Slco2b1-knockout and SLCO2B1-humanization on coproporphyrin I and III levels in rats.
المؤلفون: Kinzi J; Biopharmacy, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland., Hussner J; Biopharmacy, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland., Schäfer AM; Biopharmacy, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland., Treyer A; Pharmaceutical Biology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland., Seibert I; Biopharmacy, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland., Tillmann A; Biopharmacy, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland., Mueller V; Biopharmacy, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland., Gherardi C; Biopharmacy, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland., Vonwyl C; Biopharmacy, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland., Hamburger M; Pharmaceutical Biology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland., Meyer Zu Schwabedissen HE; Biopharmacy, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland.
المصدر: British journal of pharmacology [Br J Pharmacol] 2024 Jan; Vol. 181 (1), pp. 36-53. Date of Electronic Publication: 2023 Sep 05.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Wiley Country of Publication: England NLM ID: 7502536 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1476-5381 (Electronic) Linking ISSN: 00071188 NLM ISO Abbreviation: Br J Pharmacol Subsets: MEDLINE
أسماء مطبوعة: Publication: London : Wiley
Original Publication: London, Macmillian Journals Ltd.
مواضيع طبية MeSH: Coproporphyrins*/metabolism , Organic Anion Transporters*/genetics , Organic Anion Transporters*/metabolism, Animals ; Female ; Humans ; Rats ; Liver/metabolism ; Membrane Transport Proteins/metabolism
مستخلص: Background and Purpose: Coproporphyrin (CP) I and III are byproducts of haem synthesis currently investigated as biomarkers for drug-drug interactions involving hepatic organic anion transporting polypeptide (OATP) 1B transporters. Another hepatically expressed OATP-member is OATP2B1. The aim of this study was to test the impact of OATP2B1, which specifically transports CPIII, on CP serum levels, applying novel rat models.
Experimental Approach: CPIII transport kinetics and the interplay between OATP2B1 and multidrug resistance-associated proteins (MRPs) were determined in vitro using the vTF7 expression system. Novel rSlco2b1 -/- and SLCO2B1 +/+ rat models were characterized for physiological parameters and for CP serum levels. Hepatic and renal expression of transporters involved in CP disposition were determined by real-time qPCR, Western blot analysis, and immunohistochemistry.
Key Results: In vitro experiments revealed differences in transport kinetics comparing human and rat OATP2B1 and showed a consistent, species-specific interplay with hMRP3/rMRP3. Deletion of rOATP2B1 was associated with a trend towards lower CPI serum levels compared with wildtype rats, while CPIII remained unchanged. Comparing SLCO2B1 +/+ with knockout rats revealed an effect of sex: only in females the genetic modification influenced CP serum levels. Analysis of hepatic and renal transporters revealed marginal, but in part, statistically significant differences in rMRP2 abundance, which may contribute to the observed changes in CP serum levels.
Conclusion and Implications: Our findings support that factors other than OATP1B transporters are of relevance for basal CP levels. Only in female rats, humanization of SLCO2B1 affects basal CPI and CPIII serum levels, despite isomer selectivity of OATP2B1.
(© 2023 The Authors. British Journal of Pharmacology published by John Wiley & Sons Ltd on behalf of British Pharmacological Society.)
References: Alexander, S. P., Kelly, E., Mathie, A., Peters, J. A., Veale, E. L., Armstrong, J. F., Faccenda, E., Harding, S. D., Pawson, A. J., Southan, C., Davies, J. A., Amarosi, L., Anderson, C. M. H., Beart, P. M., Broer, S., Dawson, P. A., Hagenbuch, B., Hammond, J. R., Inui, K.-I., … Verri, T. (2021). THE CONCISE GUIDE TO PHARMACOLOGY 2021/22: Transporters. British Journal of Pharmacology, 178(S1), S412-S513. https://doi.org/10.1111/bph.15543.
Alexander, S. P. H., Roberts, R. E., Broughton, B. R. S., Sobey, C. G., George, C. H., Stanford, S. C., Cirino, G., Docherty, J. R., Giembycz, M. A., Hoyer, D., Insel, P. A., Izzo, A. A., Ji, Y., MacEwan, D. J., Mangum, J., Wonnacott, S., & Ahluwalia, A. (2018). Goals and practicalities of immunoblotting and immunohistochemistry: A guide for submission to the British Journal of Pharmacology. British Journal of Pharmacology, 175, 407-411. https://doi.org/10.1111/bph.14112.
Anzai, N., Kanai, Y., & Endou, H. (2007). New insights into renal transport of urate. Current Opinion in Rheumatology, 19, 151-157. https://doi.org/10.1097/BOR.0b013e328032781a.
Arifin, W. N., & Zahiruddin, W. M. (2017). Sample size calculation in animal studies using resource equation approach. Malaysian. Journal of Medical Sciences, 24, 101-105. https://doi.org/10.21315/mjms2017.24.5.11.
Barnett, S., Ogungbenro, K., Menochet, K., Shen, H., Lai, Y., Humphreys, W. G., & Galetin, A. (2018). Gaining mechanistic insight into coproporphyrin I as endogenous biomarker for OATP1B-mediated drug-drug interactions using population pharmacokinetic modeling and simulation. Clinical Pharmacology and Therapeutics, 104, 564-574. https://doi.org/10.1002/cpt.983.
Bednarczyk, D., & Boiselle, C. (2016). Organic anion transporting polypeptide (OATP)-mediated transport of coproporphyrins I and III. Xenobiotica, 46, 457-466. https://doi.org/10.3109/00498254.2015.1085111.
Benz-de Bretagne, I., Respaud, R., Vourc'h, P., Halimi, J. M., Caille, A., Hulot, J. S., Andres, C. R., & Le Guellec, C. (2011). Urinary elimination of coproporphyrins is dependent on ABCC2 polymorphisms and represents a potential biomarker of MRP2 activity in humans. Journal of Biomedicine & Biotechnology, 2011, 498757. https://doi.org/10.1155/2011/498757.
Bezencon, J., Saran, C., Hussner, J., Beaudoin, J. J., Zhang, Y., Shen, H., Fallon, J. K., Smith, P. C., Meyer zu Schwabedissen, H. E., & Brouwer, K. L. R. (2021). Endogenous coproporphyrin I and III are altered in multidrug resistance-associated protein 2-deficient (TR−) rats. Journal of Pharmaceutical Sciences, 110, 404-411. https://doi.org/10.1016/j.xphs.2020.10.017.
Brouwer, K. L. R., Evers, R., Hayden, E., Hu, S., Li, C. Y., Meyer Zu Schwabedissen, H. E., Neuhoff, S., Oswald, S., Piquette-Miller, M., Saran, C., Sjostedt, N., Sprowl, J. A., Stahl, S. H., & Yue, W. (2022). Regulation of drug transport proteins-From mechanisms to clinical impact: A white paper on behalf of the International Transporter Consortium. Clinical Pharmacology and Therapeutics, 112, 461-484. https://doi.org/10.1002/cpt.2605.
Chatterjee, S., Mukherjee, S., Sankara Sivaprasad, L. V. J., Naik, T., Gautam, S. S., Murali, B. V., Hadambar, A. A., Gunti, G. R., Kuchibhotla, V., Deyati, A., Basavanthappa, S., Ramarao, M., Mariappan, T. T., Zinker, B. A., Zhang, Y., Sinz, M., & Shen, H. (2021). Transporter activity changes in nonalcoholic steatohepatitis: Assessment with plasma coproporphyrin I and III. Journal of Pharmacology and Experimental Therapeutics, 376, 29-39. https://doi.org/10.1124/jpet.120.000291.
Chen, M., Hu, S., Li, Y., Gibson, A. A., Fu, Q., Baker, S. D., & Sparreboom, A. (2020). Role of Oatp2b1 in drug absorption and drug-drug interactions. Drug Metabolism and Disposition: The Biological Fate of Chemicals, 48, 419-425. https://doi.org/10.1124/dmd.119.090316.
Curtis, M. J., Alexander, S. P. H., Cirino, G., George, C. H., Kendall, D. A., Insel, P. A., Izzo, A. A., Ji, Y., Panettieri, R. A., Patel, H. H., Sobey, C. G., Stanford, S. C., Stanley, P., Stefanska, B., Stephens, G. J., Teixeira, M. M., Vergnolle, N., & Ahluwalia, A. (2022). Planning experiments: Updated guidance on experimental design and analysis and their reporting III. British Journal of Pharmacology, 179, 3907-3913. https://doi.org/10.1111/bph.15868.
Feng, S., Bo, Q., Coleman, H. A., Charoin, J. E., Zhu, M., Xiao, J., & Jin, Y. (2021). Further evaluation of coproporphyrins as clinical endogenous markers for OATP1B. Journal of Clinical Pharmacology, 61, 1027-1034. https://doi.org/10.1002/jcph.1817.
Ferreira, C., Hagen, P., Stern, M., Hussner, J., Zimmermann, U., Grube, M., & Meyer zu Schwabedissen, H. E. (2018). The scaffold protein PDZK1 modulates expression and function of the organic anion transporting polypeptide 2B1. European Journal of Pharmaceutical Sciences, 120, 181-190. https://doi.org/10.1016/j.ejps.2018.05.006.
Gouma, E., Simos, Y., Verginadis, I., Lykoudis, E., Evangelou, A., & Karkabounas, S. (2012). A simple procedure for estimation of total body surface area and determination of a new value of Meeh's constant in rats. Laboratory Animals, 46, 40-45. https://doi.org/10.1258/la.2011.011021.
Gu, X., & Manautou, J. E. (2010). Regulation of hepatic ABCC transporters by xenobiotics and in disease states. Drug Metabolism Reviews, 42, 482-538. https://doi.org/10.3109/03602531003654915.
Hussner, J., Foletti, A., Seibert, I., Fuchs, A., Schuler, E., Malagnino, V., Grube, M., & Meyer Zu Schwabedissen, H. E. (2021). Differences in transport function of the human and rat orthologue of the Organic Anion Transporting Polypeptide 2B1 (OATP2B1). Drug Metabolism and Pharmacokinetics, 41, 100418. https://doi.org/10.1016/j.dmpk.2021.100418.
International Transporter Consortium, Giacomini, K. M., Huang, S. M., Tweedie, D. J., Benet, L. Z., Brouwer, K. L., Chu, X., Dahlin, A., Evers, R., Fischer, V., Hillgren, K. M., Hoffmaster, K. A., Ishikawa, T., Keppler, D., Kim, R. B., Lee, C. A., Niemi, M., Polli, J. W., Sugiyama, Y., … Zhang, L. (2010). Membrane transporters in drug development. Nature Reviews. Drug Discovery, 9, 215-236. https://doi.org/10.1038/nrd3028.
Johnson, B. M., Zhang, P., Schuetz, J. D., & Brouwer, K. L. (2006). Characterization of transport protein expression in multidrug resistance-associated protein (Mrp) 2-deficient rats. Drug Metabolism and Disposition: The Biological Fate of Chemicals, 34, 556-562. https://doi.org/10.1124/dmd.105.005793.
Kinzi, J., Grube, M., & Meyer Zu Schwabedissen, H. E. (2021). OATP2B1-The underrated member of the organic anion transporting polypeptide family of drug transporters? Biochemical Pharmacology, 188, 114534. https://doi.org/10.1016/j.bcp.2021.114534.
Knauer, M. J., Urquhart, B. L., Meyer Zu Schwabedissen, H. E., Schwarz, U. I., Lemke, C. J., Leake, B. F., Kim, R. B., & Tirona, R. G. (2010). Human skeletal muscle drug transporters determine local exposure and toxicity of statins. Circulation Research, 106, 297-306. https://doi.org/10.1161/CIRCRESAHA.109.203596.
Konig, J., Rost, D., Cui, Y., & Keppler, D. (1999). Characterization of the human multidrug resistance protein isoform MRP3 localized to the basolateral hepatocyte membrane. Hepatology, 29, 1156-1163. https://doi.org/10.1002/hep.510290404.
Kunze, A., Ediage, E. N., Dillen, L., Monshouwer, M., & Snoeys, J. (2018). Clinical investigation of coproporphyrins as sensitive biomarkers to predict mild to strong OATP1B-mediated drug-drug interactions. Clinical Pharmacokinetics, 57, 1559-1570. https://doi.org/10.1007/s40262-018-0648-3.
Kuroda, M., Kobayashi, Y., Tanaka, Y., Itani, T., Mifuji, R., Araki, J., Kaito, M., & Adachi, Y. (2004). Increased hepatic and renal expressions of multidrug resistance-associated protein 3 in Eisai hyperbilirubinuria rats. Journal of Gastroenterology and Hepatology, 19, 146-153. https://doi.org/10.1111/j.1440-1746.2004.03275.x.
Lai, Y., Mandlekar, S., Shen, H., Holenarsipur, V. K., Langish, R., Rajanna, P., Murugesan, S., Gaud, N., Selvam, S., Date, O., Cheng, Y., Shipkova, P., Dai, J., Humphreys, W. G., & Marathe, P. (2016). Coproporphyrins in plasma and urine can be appropriate clinical biomarkers to recapitulate drug-drug interactions mediated by organic anion transporting polypeptide inhibition. Journal of Pharmacology and Experimental Therapeutics, 358, 397-404. https://doi.org/10.1124/jpet.116.234914.
Lilley, E., Stanford, S. C., Kendall, D. E., Alexander, S. P. H., Cirino, G., Docherty, J. R., George, C. H., Insel, P. A., Izzo, A. A., Ji, Y., Panettieri, R. A., Sobey, C. G., Stefanska, B., Stephens, G., Teixeira, M., & Ahluwalia, A. (2020). ARRIVE 2.0 and the British Journal of Pharmacology: Updated guidance for 2020. British Journal of Pharmacology, 177, 3611-3616. https://doi.org/10.1111/bph.15178.
Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods, 25, 402-408. https://doi.org/10.1006/meth.2001.1262.
Marie, S., Hernandez-Lozano, I., Breuil, L., Truillet, C., Hu, S., Sparreboom, A., Tournier, N., & Langer, O. (2021). Imaging-based characterization of a Slco2b1(-/-) mouse model using [11C]erlotinib and [99mTc]mebrofenin as probe substrates. Pharmaceutics, 13, 918. https://doi.org/10.3390/pharmaceutics13060918.
McFeely, S. J., Wu, L., Ritchie, T. K., & Unadkat, J. (2019). Organic anion transporting polypeptide 2B1-More than a glass-full of drug interactions. Pharmacology and Therapeutics, 196, 204-215. https://doi.org/10.1016/j.pharmthera.2018.12.009.
Medwid, S., Li, M. M. J., Knauer, M. J., Lin, K., Mansell, S. E., Schmerk, C. L., Zhu, C., Griffin, K. E., Yousif, M. D., Dresser, G. K., Schwarz, U. I., Kim, R. B., & Tirona, R. G. (2019). Fexofenadine and rosuvastatin pharmacokinetics in mice with targeted disruption of organic anion transporting polypeptide 2B1. Drug Metabolism and Disposition: The Biological Fate of Chemicals, 47, 832-842. https://doi.org/10.1124/dmd.119.087619.
Medwid, S., Price, H. R., Taylor, D. P., Mailloux, J., Schwarz, U. I., Kim, R. B., & Tirona, R. G. (2021). Organic anion transporting polypeptide 2B1 (OATP2B1) genetic variants: In vitro functional characterization and association with circulating concentrations of endogenous substrates. Frontiers in Pharmacology, 12, 713567. https://doi.org/10.3389/fphar.2021.713567.
Mori, D., Kashihara, Y., Yoshikado, T., Kimura, M., Hirota, T., Matsuki, S., Maeda, K., Irie, S., Ieiri, I., Sugiyama, Y., & Kusuhara, H. (2019). Effect of OATP1B1 genotypes on plasma concentrations of endogenous OATP1B1 substrates and drugs, and their association in healthy volunteers. Drug Metabolism and Pharmacokinetics, 34, 78-86. https://doi.org/10.1016/j.dmpk.2018.09.003.
Mori, D., Kimoto, E., Rago, B., Kondo, Y., King-Ahmad, A., Ramanathan, R., Wood, L. S., Johnson, J. G., Le, V. H., Vourvahis, M., David Rodrigues, A., Muto, C., Furihata, K., Sugiyama, Y., & Kusuhara, H. (2020). Dose-dependent inhibition of OATP1B by rifampicin in healthy volunteers: Comprehensive evaluation of candidate biomarkers and OATP1B probe drugs. Clinical Pharmacology and Therapeutics, 107, 1004-1013. https://doi.org/10.1002/cpt.1695.
Moriondo, V., Marchini, S., Di Gangi, P., Ferrari, M. C., Nascimbeni, F., Rocchi, E., & Ventura, P. (2009). Role of Multidrug-Resistance Protein 2 in coproporphyrin transport: Results from experimental studies in bile fistula rat models. Cellular and Molecular Biology (Noisy-le-Grand, France), 55, 70-78.
Njumbe Ediage, E., Dillen, L., Vroman, A., Diels, L., Kunze, A., Snoeys, J., & Verhaeghe, T. (2018). Development of an LC-MS method to quantify coproporphyrin I and III as endogenous biomarkers for drug transporter-mediated drug-drug interactions. Journal of Chromatography B, Analytical Technologies in the Biomedical and Life Sciences, 1073, 80-89. https://doi.org/10.1016/j.jchromb.2017.12.008.
Oleschuk, C. J., Deeley, R. G., & Cole, S. P. (2003). Substitution of Trp1242 of TM17 alters substrate specificity of human multidrug resistance protein 3. American Journal of Physiology: Gastrointestinal and Liver Physiology, 284, G280-G289. https://doi.org/10.1152/ajpgi.00331.2002.
Percie du Sert, N., Hurst, V., Ahluwalia, A., Alam, S., Avey, M. T., Baker, M., Browne, W. J., Clark, A., Cuthill, I. C., Dirnagl, U., Emerson, M., Garner, P., Holgate, S. T., Howells, D. W., Karp, N. A., Lazic, S. E., Lidster, K., MacCallum, C. J., Macleod, M., … Wurbel, H. (2020). The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research. PLoS Biology, 18, e3000410. https://doi.org/10.1371/journal.pbio.3000410.
Schäfer, A. M., Bock, T., & Meyer Zu Schwabedissen, H. E. (2018). Establishment and validation of competitive counterflow as a method to detect substrates of the organic anion transporting polypeptide 2B1. Molecular Pharmaceutics, 15, 5501-5513. https://doi.org/10.1021/acs.molpharmaceut.8b00631.
Shen, H., Chen, W., Drexler, D. M., Mandlekar, S., Holenarsipur, V. K., Shields, E. E., Langish, R., Sidik, K., Gan, J., Humphreys, W. G., Marathe, P., & Lai, Y. (2017). Comparative evaluation of plasma bile acids, dehydroepiandrosterone sulfate, hexadecanedioate, and tetradecanedioate with coproporphyrins I and III as markers of OATP inhibition in healthy subjects. Drug Metabolism and Disposition: The Biological Fate of Chemicals, 45, 908-919. https://doi.org/10.1124/dmd.117.075531.
Shen, H., Christopher, L., Lai, Y., Gong, J., Kandoussi, H., Garonzik, S., Perera, V., Garimella, T., & Humphreys, W. G. (2018). Further studies to support the use of coproporphyrin I and III as novel clinical biomarkers for evaluating the potential for organic anion transporting polypeptide 1B1 and OATP1B3 inhibition. Drug Metabolism and Disposition: the Biological Fate of Chemicals, 46, 1075-1082. https://doi.org/10.1124/dmd.118.081125.
Shen, H., Dai, J., Liu, T., Cheng, Y., Chen, W., Freeden, C., Zhang, Y., Humphreys, W. G., Marathe, P., & Lai, Y. (2016). Coproporphyrins I and III as functional markers of OATP1B activity: In vitro and in vivo evaluation in preclinical species. Journal of Pharmacology and Experimental Therapeutics, 357, 382-393. https://doi.org/10.1124/jpet.116.232066.
Shimizu, Y., Ida, S., Naruto, H., & Urata, G. (1978). Excretion of porphyrins in urine and bile after the administration of delta-aminolevulinic acid. Journal of Laboratory and Clinical Medicine, 92, 795-802.
Strassburg, C. P. (2010). Hyperbilirubinemia syndromes (Gilbert-Meulengracht, Crigler-Najjar, Dubin-Johnson, and Rotor syndrome). Best Practice & Research: Clinical Gastroenterology, 24, 555-571. https://doi.org/10.1016/j.bpg.2010.07.007.
Takita, H., Barnett, S., Zhang, Y., Menochet, K., Shen, H., Ogungbenro, K., & Galetin, A. (2021). PBPK model of coproporphyrin I: Evaluation of the impact of SLCO1B1 genotype, ethnicity, and sex on its inter-individual variability. CPT: Pharmacometrics & Systems Pharmacology, 10, 137-147. https://doi.org/10.1002/psp4.12582.
U.S. Food and Drug Administration, Center for Drug Evaluation and Research. (2022). Drug Development and Drug Interactions|Table of Substrates, Inhibitors and Inducers.
Wang, P., Wang, W. J., Choi-Nurvitadhi, J., Lescaille, Y., Murray, J. W., & Wolkoff, A. W. (2019). Rat organic anion transport protein 1A1 interacts directly with organic anion transport protein 1A4 facilitating its maturation and trafficking to the hepatocyte plasma membrane. Hepatology, 70, 2156-2170. https://doi.org/10.1002/hep.30772.
Yee, S. W., Giacomini, M. M., Shen, H., Humphreys, W. G., Horng, H., Brian, W., Lai, Y., Kroetz, D. L., & Giacomini, K. M. (2019). Organic anion transporter polypeptide 1B1 polymorphism modulates the extent of drug-drug interaction and associated biomarker levels in healthy volunteers. Clinical and Translational Science, 12, 388-399. https://doi.org/10.1111/cts.12625.
Zabela, V., Sampath, C., Oufir, M., Butterweck, V., & Hamburger, M. (2020). Single dose pharmacokinetics of intravenous 3,4-dihydroxyphenylacetic acid and 3-hydroxyphenylacetic acid in rats. Fitoterapia, 142, 104526. https://doi.org/10.1016/j.fitote.2020.104526.
فهرسة مساهمة: Keywords: OATP2B1; coproporphyrin; drug transporter; humanized; in vivo; knockout; rat
المشرفين على المادة: 531-14-6 (coproporphyrin I)
0 (Coproporphyrins)
0 (Membrane Transport Proteins)
0 (Organic Anion Transporters)
0 (SLCO2B1 protein, human)
0 (Slco2b1 protein, rat)
تواريخ الأحداث: Date Created: 20230803 Date Completed: 20231215 Latest Revision: 20240306
رمز التحديث: 20240307
DOI: 10.1111/bph.16205
PMID: 37533302
قاعدة البيانات: MEDLINE
الوصف
تدمد:1476-5381
DOI:10.1111/bph.16205