دورية أكاديمية

Hands-On: Investigating the role of physical manipulatives in spatial training.

التفاصيل البيبلوغرافية
العنوان: Hands-On: Investigating the role of physical manipulatives in spatial training.
المؤلفون: Gilligan-Lee KA; School of Psychology, University College Dublin, Dublin, Ireland.; School of Psychology, University of Surrey, Guildford, UK.; Centre for Educational Neuroscience, Birkbeck, University of London, London, UK., Hawes ZCK; Department of Applied Psychology & Human Development, Ontario Institute for Studies in Education, University of Toronto, Toronto, Ontario, Canada., Williams AY; School of Psychology, University of Surrey, Guildford, UK., Farran EK; School of Psychology, University of Surrey, Guildford, UK.; Centre for Educational Neuroscience, Birkbeck, University of London, London, UK., Mix KS; Department of Human Development and Quantitative Methodology, University of Maryland, College Park, Maryland, USA.
المصدر: Child development [Child Dev] 2023 Sep-Oct; Vol. 94 (5), pp. 1205-1221. Date of Electronic Publication: 2023 Aug 07.
نوع المنشور: Randomized Controlled Trial; Journal Article; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Blackwell Publishers Country of Publication: United States NLM ID: 0372725 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1467-8624 (Electronic) Linking ISSN: 00093920 NLM ISO Abbreviation: Child Dev Subsets: MEDLINE
أسماء مطبوعة: Publication: Malden, MA : Blackwell Publishers
Original Publication: [Chicago, etc.] : Published by the University of Chicago Press for the Society for Research in Child Development [etc.]
مواضيع طبية MeSH: Parent-Child Relations*, Child ; Humans ; Female ; Male ; Mathematics
مستخلص: Studies show that spatial interventions lead to improvements in mathematics. However, outcomes vary based on whether physical manipulatives (embodied action) are used during training. This study compares the effects of embodied and non-embodied spatial interventions on spatial and mathematics outcomes. The study has a randomized, controlled, pre-post, follow-up, training design (N = 182; mean age 8 years; 49% female; 83.5% White). We show that both embodied and non-embodied spatial training approaches improve spatial skills compared to control. However, we conclude that embodied spatial training using physical manipulatives leads to larger, more consistent gains in mathematics and greater depth of spatial processing than non-embodied training. These findings highlight the potential of spatial activities, particularly those that use physical materials, for improving children's mathematics skills.
(© 2023 The Authors. Child Development published by Wiley Periodicals LLC on behalf of Society for Research in Child Development.)
References: Alibali, M. W., & Nathan, M. J. (2018). Embodied cognition in learning and teaching: Action, observation, and imagination. In International handbook of the learning sciences (pp. 75-85). Routledge.
Barsalou, L. W. (2008). Grounded cognition. Annual Review of Psychology, 59(1), 617-645. https://doi.org/10.1146/annurev.psych.59.103006.093639.
Barsalou, L. W. (2010). Grounded cognition: Past, present, and future. Topics in Cognitive Science, 2(4), 716-724. https://doi.org/10.1111/j.1756-8765.2010.01115.x.
Berteletti, I., & Booth, J. R. (2015). Perceiving fingers in single-digit arithmetic problems. Frontiers in Psychology, 6(226), 1-10. https://doi.org/10.3389/fpsyg.2015.00226.
Boot, W. R., Simons, D. J., Stothart, C., & Stutts, C. (2013). The pervasive problem with placebos in psychology: Why active control groups are not sufficient to rule out placebo effects. Perspectives on Psychological Science, 8(4), 445-454. https://doi.org/10.1177/1745691613491271.
Booton, S. A., Hodgkiss, A., Mathers, S., & Murphy, V. A. (2022). Measuring knowledge of multiple word meanings in children with English as a first and an additional language and the relationship to reading comprehension. Journal of Child Language, 49(1), 164-169. https://doi.org/10.1017/S0305000921000052.
Booton, S. A., & Murphy, V. M. (in prep). A randomised controlled trial of inference training for homonyms: impact and transfer for first and second English language learners.
Bower, C. A., Zimmermann, L., Verdine, B. N., Pritulsky, C., Golinkoff, R. M., & Hirsh-Pasek, K. (2022). Enhancing spatial skills of preschoolers from under-resourced backgrounds: A comparison of digital app vs. concrete materials. Developmental Science, 25(1), e13148. https://doi.org/10.1111/desc.13148.
Casey, B. M., & Fell, H. (2018). Spatial reasoning: A critical problem solving tool in children's mathematics strategy tool-kit. In K. Mix & M. Battista (Eds.), Visualizing mathematics: The role of spatial reasoning in mathematical thought (pp. 47-75). Springer Nature Publishing. https://doi.org/10.1007/978-3-319-98767-5_3.
Cheng, Y. L., & Mix, K. S. (2014). Spatial training improves Children's mathematics ability. Journal of Cognition and Development, 15(1), 2-11. https://doi.org/10.1080/15248372.2012.725186.
Cheung, C. N., Sung, J. Y., & Lourenco, S. F. (2019). Does training mental rotation transfer to gains in mathematical competence? Assessment of an at-home visuospatial intervention. Psychological Research, 84, 2000-2017. https://doi.org/10.1007/s00426-019-01202-5.
Cornu, V., Schiltz, C., Pazouki, T., & Martin, R. (2019). Training early visuo-spatial abilities: A controlled classroom-based intervention study. Applied Developmental Science, 23, 1-21. https://doi.org/10.1080/10888691.2016.1276835.
Ebisch, S. J., Perrucci, M. G., Mercuri, P., Romanelli, R., Mantini, D., Romani, G. L., … Saggino, A. (2012). Common and unique neuro-functional basis of induction, visualization, and spatial relationships as cognitive components of fluid intelligence. NeuroImage, 62(1), 331-342. https://doi.org/10.1016/j.neuroimage.2012.04.053.
Ehrlich, S. B., Levine, S. C., & Goldin-Meadow, S. (2006). The importance of gesture in Children's spatial reasoning. Developmental Psychology, 42(6), 1259-1268. https://doi.org/10.1037/0012-1649.42.6.1259.
Field, A. (2013). Discovering statistics using IBM SPSS statistics. Sage.
Gilligan, K. A., Flouri, E., & Farran, E. K. (2017). The contribution of spatial ability to mathematics achievement in middle childhood. Journal of Experimental Child Psychology, 163, 107-125. https://doi.org/10.1016/j.jecp.2017.04.016.
Gilligan, K. A., Hodgkiss, A., Thomas, M. S., & Farran, E. K. (2019). The developmental relations between spatial cognition and mathematics in primary school children. Developmental Science, 22(4), e12786. https://doi.org/10.1111/desc.12786.
Gilligan, K. A., Thomas, M. S., & Farran, E. K. (2019). First demonstration of effective spatial training for near transfer to spatial performance and far transfer to a range of mathematics skills at 8 years Developmental Science, 23(4), e12909. https://doi.org/10.1111/desc.12909.
Gilligan-Lee, K. A., Hawes, Z. C. K., & Mix, K. S. (2022). Spatial thinking as the missing piece in mathematics curricula. npj Science of Learning, 7, 10. https://doi.org/10.1038/s41539-022-00128-9.
Glenberg, A. M. (2008). Embodiment for education. In Handbook of cognitive science (pp. 355-372). Elsevier.
Glenberg, A. M., Gutierrez, T., Levin, J. R., Japuntich, S., & Kaschak, M. P. (2004). Activity and imagined activity can enhance young children's reading comprehension. Journal of Educational Psychology, 96, 424-436. https://doi.org/10.1037/0022-0663.96.3.424.
Glenberg, A. M., & Kaschak, M. P. (2002). Grounding language in action. Psychonomic Bulletin and Review, 9, 558-565. https://doi.org/10.3758/BF03196313.
Green, S. C., Bavelier, D., Kramer, A., Vinogradov, S., Ansorge, U., Ball, K., & Witt, C. (2019). Improving methodological standards in behavioral interventions for cognitive enhancement. Journal of Cognitive Enhancement, 3(1), 2-29. https://doi.org/10.1007/s41465-018-0115-y.
Harris, J., Newcombe, N. S., & Hirsh-Pasek, K. (2013). A new twist on studying the development of dynamic spatial transformations: Mental paper folding in Young children. Mind, Brain and Education, 7(1), 49-55. https://doi.org/10.1111/mbe.12007.
Hattie, J. A. C. (2009). Visible learning: A synthesis of 800+ meta-analyses on achievement. Routledge.
Hawes, Z. C. K., Gilligan-Lee, K. A., & Mix, K. S. (2023). Infusing Spatial Thinking Into Elementary and Middle School Mathematics: What, Why, and How? In Mathematical Cognition and Understanding: Perspectives on Mathematical Minds in the Elementary and Middle School Years (pp. 13-33). Cham: Springer International Publishing.
Hawes, Z., Moss, J., Caswell, B., Naqvi, S., & MacKinnon, S. (2017). Enhancing children's spatial and numerical skills through a dynamic spatial approach to early geometry instruction: Effects of a 32-week intervention. Cognition and Instruction, 35(3), 236-264. https://doi.org/10.1080/07370008.2017.1323902.
Hawes, Z., Moss, J., Caswell, B., & Poliszczuk, D. (2015). Effects of mental rotation training on children's spatial and mathematics performance: A randomized controlled study. Trends in Neuroscience and Education, 4(3), 60-68. https://doi.org/10.1016/j.tine.2015.05.001.
Hawes, Z., Moss, J., Caswell, B., Seo, J., & Ansari, D. (2019). Relations between numerical, spatial, and executive function skills and mathematics achievement: A latent-variable approach. Cognitive Psychology, 109, 68-90. https://doi.org/10.1016/j.cogpsych.2018.12.002.
Hawes, Z., Sokolowski, H. M., Ononye, C. B., & Ansari, D. (2019). Neural underpinnings of spatial and numerical cognition: An fMRI meta-analysis of brain regions associated with symbolic number, arithmetic, and mental rotation. Neuroscience & Biobehavioral Reviews, 103, 316-336. https://doi.org/10.1016/j.neubiorev.2019.05.007.
Hawes, Z. C. K., Gilligan-Lee, K. A., & Mix, K. S. (2022). Effects of spatial training on mathematics performance: A meta-analysis. Developmental Psychology, 58(1), 112-137. https://doi.org/10.1037/dev0001281.
Hegarty, M., & Kozhevnikov, M. (1999). Types of visual-spatial representations and mathematical problem solving. Journal of educational psychology, 91(4), 684-689.
Jarosz, A. F., & Wiley, J. (2014). What are the odds? A practical guide to computing and reporting Bayes factors. The Journal of Problem Solving, 7(1), 2-9. https://doi.org/10.7771/1932-6246.1167.
Kontra, C., Lyons, D. J., Fischer, S. M., & Beilock, S. L. (2015). Physical experience enhances science learning. Psychological Science, 26(6), 737-749. https://doi.org/10.1177/0956797615569355.
Lourenco, S. F., Cheung, C. N., & Aulet, L. S. (2018). Is visuospatial reasoning related to early mathematical development? A critical review. In A. Henik & W. Fias (Eds.), Heterogeneity of function in numerical cognition (pp. 177-210). Academic Press.
Lowrie, T., Logan, T., & Ramful, A. (2017). Visuospatial training improves elementary students' mathematics performance. British Journal of Educational Psychology, 87(2), 170-186. https://doi.org/10.1111/bjep.12142.
Mix, K. S. (2010). Spatial tools for mathematical thought. In K. S. Mix, L. B. Smith, & M. Gasser (Eds.), Space and language (pp. 41-66). Oxford University Press.
Mix, K. S. (2019). Why are spatial skill and mathematics related? Child Development Perspectives, 13(2), 121-126. https://doi.org/10.1111/cdep.12323.
Mix, K. S., Levine, S. C., Cheng, Y.-L., Stockton, J. D., & Bower, C. (2021). Effects of spatial training on mathematics in first and sixth grade children. Journal of Educational Psychology, 113(2), 304-314. https://doi.org/10.1037/edu0000494.
Mix, K. S., Levine, S. C., Cheng, Y.-L., Young, C., Hambrick, D. Z., Ping, R., & Konstantopoulos, S. (2016). Separate but correlated: The latent structure of space and mathematics across development. Journal of Experimental Psychology General, 145(9), 1206-1227. https://doi.org/10.1037/xge0000182.
Mix, K. S., Levine, S. C., Cheng, Y.-L., Young, C. J., Hambrick, D. Z., & Konstantopoulos, S. (2017). The latent structure of spatial skills and mathematics: A replication of the two-factor model. Journal of Cognition and Development, 18(4), 465-492. https://doi.org/10.1080/15248372.2017.1346658.
Mohring, W., & Frick, A. (2013). Touching up mental rotation: Effects of manual experience on 6-month-old infants' mental object rotation. Child Development, 84(5), 1554-1565. https://doi.org/10.1111/cdev.12065.
Neuburger, S., Jansen, P., Heil, M., & Quaiser-Pohl, C. (2011). Gender differences in pre-adolescents' mental-rotation performance: Do they depend on grade and stimulus type? Personality and Individual Differences, 50(8), 1238-1242. https://doi.org/10.1016/j.paid.2011.02.017.
Newcombe, N. S. (2018). Three kinds of spatial cognition. In J. Wixted (Ed.), Stevens' handbook of experimental psychology and cognitive neuroscience (4th ed., pp. 1-31). John Wiley & Sons. https://doi.org/10.1002/9781119170174.epcn315.
Pearl, J. (2009). Causality: Models, reasoning, and inference. Cambridge university press.
Pecher, D., & Zwaan, R. A. (2005). Grounding cognition: The role of perception and.action in memory, language, and thinking. Cambridge University Press.
Pulvermüller, F. (2005). Brain mechanisms linking language and action. Nature Reviews: Neuroscience, 6(7), 576-582. https://doi.org/10.1038/nrn1706.
Thurstone, T. G. (1974). PMA readiness level. Science Research Associates.
Uttal, D. H., Meadow, N. G., Tipton, E., Hand, L. L., Alden, A. R., Warren, C., & Newcombe, N. S. (2013). The malleability of spatial skills: A meta-analysis of training studies. Psychological Bulletin, 139(2), 352-402. https://doi.org/10.1037/a0028446.
Verdine, B. N., Irwin, C. M., Golinkoff, R. M., & Hirsh-Pasek, K. (2014). Contributions of executive function and spatial skills to preschool mathematics achievement. Journal of Experimental Child Psychology, 126, 37-51. https://doi.org/10.1016/j.jecp.2014.02.012.
Yang, W., Liu, H., Chen, N., Xu, P., & Lin, X. (2020). Is early spatial skills training effective? A Meta-Analysis. Frontiers in Psychology, 11, 1938. https://doi.org/10.3389/fpsyg.2020.01938.
تواريخ الأحداث: Date Created: 20230807 Date Completed: 20231102 Latest Revision: 20231107
رمز التحديث: 20231215
DOI: 10.1111/cdev.13963
PMID: 37547951
قاعدة البيانات: MEDLINE
الوصف
تدمد:1467-8624
DOI:10.1111/cdev.13963