دورية أكاديمية

Cell-specific rates of sulfate reduction and fermentation in the sub-seafloor biosphere.

التفاصيل البيبلوغرافية
العنوان: Cell-specific rates of sulfate reduction and fermentation in the sub-seafloor biosphere.
المؤلفون: Jaussi M; Department of Biology, Aarhus University, Aarhus, Denmark., Jørgensen BB; Department of Biology, Aarhus University, Aarhus, Denmark., Kjeldsen KU; Department of Biology, Aarhus University, Aarhus, Denmark., Lomstein BA; Department of Biology, Aarhus University, Aarhus, Denmark., Pearce C; Department of Geoscience, Aarhus University, Aarhus, Denmark., Seidenkantz MS; Department of Geoscience, Aarhus University, Aarhus, Denmark., Røy H; Department of Biology, Aarhus University, Aarhus, Denmark.
المصدر: Frontiers in microbiology [Front Microbiol] 2023 Jul 24; Vol. 14, pp. 1198664. Date of Electronic Publication: 2023 Jul 24 (Print Publication: 2023).
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Frontiers Research Foundation Country of Publication: Switzerland NLM ID: 101548977 Publication Model: eCollection Cited Medium: Print ISSN: 1664-302X (Print) Linking ISSN: 1664302X NLM ISO Abbreviation: Front Microbiol Subsets: PubMed not MEDLINE
أسماء مطبوعة: Original Publication: Lausanne : Frontiers Research Foundation
مستخلص: Microorganisms in subsurface sediments live from recalcitrant organic matter deposited thousands or millions of years ago. Their catabolic activities are low, but the deep biosphere is of global importance due to its volume. The stability of deeply buried sediments provides a natural laboratory where prokaryotic communities that live in steady state with their environments can be studied over long time scales. We tested if a balance is established between the flow of energy, the microbial community size, and the basal power requirement needed to maintain cells in sediments buried meters below the sea floor. We measured rates of carbon oxidation by sulfate reduction and counted the microbial cells throughout ten carefully selected sediment cores with ages from years to millions of years. The rates of carbon oxidation were converted to power (J s -1 i.e., Watt) using the Gibbs free energy of the anaerobic oxidation of complex organic carbon. We separated energy dissipation by fermentation from sulfate reduction. Similarly, we separated the community into sulfate reducers and non-sulfate reducers based on the dsrB gene, so that sulfate reduction could be related to sulfate reducers. We found that the per-cell sulfate reduction rate was stable near 10 -2 fmol C cell -1 day -1 right below the zone of bioturbation and did not decrease with increasing depth and sediment age. The corresponding power dissipation rate was 10 -17 W sulfate-reducing cell -1 . The cell-specific power dissipation of sulfate reducers in old sediments was similar to the slowest growing anaerobic cultures. The energy from mineralization of organic matter that was not dissipated by sulfate reduction was distributed evenly to all cells that did not possess the dsrB gene, i.e., cells operationally defined as fermenting. In contrast to sulfate reducers, the fermenting cells had decreasing catabolism as the sediment aged. A vast difference in power requirement between fermenters and sulfate reducers caused the microbial community in old sediments to consist of a minute fraction of sulfate reducers and a vast majority of fermenters.
Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
(Copyright © 2023 Jaussi, Jørgensen, Kjeldsen, Lomstein, Pearce, Seidenkantz and Røy.)
References: Proc Natl Acad Sci U S A. 2008 Jul 29;105(30):10583-8. (PMID: 18650394)
FEMS Microbiol Ecol. 2006 Oct;58(1):65-85. (PMID: 16958909)
FEMS Microbiol Rev. 2015 Sep;39(5):688-728. (PMID: 25994609)
Front Microbiol. 2015 Jul 15;6:718. (PMID: 26236299)
FEMS Microbiol Ecol. 2019 Jun 1;95(6):. (PMID: 31095297)
Astrobiology. 2002 Spring;2(1):77-82. (PMID: 12449856)
Nat Rev Microbiol. 2013 Feb;11(2):83-94. (PMID: 23321532)
FEMS Microbiol Ecol. 2015 May;91(5):. (PMID: 25873465)
Sci Adv. 2020 Aug 05;6(32):eaba0697. (PMID: 32821818)
Appl Environ Microbiol. 2009 Sep;75(17):5621-30. (PMID: 19561180)
Appl Environ Microbiol. 2013 Oct;79(19):5962-9. (PMID: 23872556)
Nature. 2005 Jul 21;436(7049):390-4. (PMID: 16034418)
Proc Natl Acad Sci U S A. 2006 Mar 7;103(10):3846-51. (PMID: 16505362)
Proc Natl Acad Sci U S A. 1998 Jun 9;95(12):6578-83. (PMID: 9618454)
Front Microbiol. 2015 Aug 24;6:846. (PMID: 26379631)
Nat Commun. 2022 Jan 25;13(1):312. (PMID: 35078973)
Proc Natl Acad Sci U S A. 2020 Jul 7;117(27):15911-15922. (PMID: 32576690)
Proc Natl Acad Sci U S A. 2012 Oct 2;109(40):16213-6. (PMID: 22927371)
Sci Rep. 2017 Jul 18;7(1):5680. (PMID: 28720809)
Proc Natl Acad Sci U S A. 2017 Mar 14;114(11):2940-2945. (PMID: 28242677)
Appl Environ Microbiol. 2019 Jul 18;85(15):. (PMID: 31152016)
Front Microbiol. 2019 Apr 12;10:758. (PMID: 31031732)
FEMS Microbiol Ecol. 2013 Apr;84(1):1-23. (PMID: 23228016)
Science. 2004 Dec 24;306(5705):2216-21. (PMID: 15618510)
Science. 2000 Apr 28;288(5466):658-61. (PMID: 10784446)
Appl Environ Microbiol. 2013 Aug;79(16):4921-31. (PMID: 23770901)
Proc Natl Acad Sci U S A. 2018 Jan 9;115(2):367-372. (PMID: 29279408)
Geobiology. 2009 Sep;7(4):385-92. (PMID: 19702823)
FEMS Microbiol Ecol. 2007 May;60(2):287-98. (PMID: 17367515)
Front Microbiol. 2016 Oct 05;7:1576. (PMID: 27761134)
Environ Microbiol Rep. 2016 Aug;8(4):452-60. (PMID: 26991974)
Sci Rep. 2020 Aug 3;10(1):13025. (PMID: 32747679)
Environ Microbiol. 2009 May;11(5):1278-91. (PMID: 19220398)
Environ Microbiol. 2010 May;12(5):1348-62. (PMID: 20236170)
Environ Microbiol. 2013 Oct;15(10):2841-9. (PMID: 23731283)
FEMS Microbiol Ecol. 2007 Jan;59(1):10-22. (PMID: 17069623)
Front Microbiol. 2019 Nov 07;10:2558. (PMID: 31787951)
Geobiology. 2014 Jan;12(1):1-19. (PMID: 24289240)
Nature. 2012 Mar 18;484(7392):101-4. (PMID: 22425999)
Science. 2012 May 18;336(6083):922-5. (PMID: 22605778)
Environ Microbiol. 2007 Jan;9(1):131-42. (PMID: 17227418)
Nature. 2013 Jul 11;499(7457):205-8. (PMID: 23760485)
FEMS Microbiol Rev. 2020 Mar 1;44(2):219-231. (PMID: 32065239)
Annu Rev Microbiol. 1997;51:1-45. (PMID: 9343342)
Environ Microbiol. 2006 Jul;8(7):1251-60. (PMID: 16817933)
Appl Environ Microbiol. 2017 Nov 16;83(23):. (PMID: 28939599)
فهرسة مساهمة: Keywords: basal power requirement; cell-specific carbon oxidation rates; deep biosphere; fermentative microorganisms; sulfate reducing microorganisms
تواريخ الأحداث: Date Created: 20230809 Latest Revision: 20230810
رمز التحديث: 20230810
مُعرف محوري في PubMed: PMC10405931
DOI: 10.3389/fmicb.2023.1198664
PMID: 37555068
قاعدة البيانات: MEDLINE
الوصف
تدمد:1664-302X
DOI:10.3389/fmicb.2023.1198664