دورية أكاديمية

Inhibition of cystathionine-gamma lyase dampens vasoconstriction in mouse and human intracerebral arterioles.

التفاصيل البيبلوغرافية
العنوان: Inhibition of cystathionine-gamma lyase dampens vasoconstriction in mouse and human intracerebral arterioles.
المؤلفون: Peleli M; Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.; Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark.; Laboratory of Pharmacology, Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece.; Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation of the Academy of Athens, Athens, Greece., Lyngso KS; Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark., Poulsen FR; Department of Neurosurgery, Odense University Hospital, Odense, Denmark.; Department of Clinical Research, University of Southern Denmark and BRIDGE (Brain Research-Interdisciplinary Guided Excellence), Odense, Denmark.; OPEN - Odense Patient Data Explorative Network, Odense, Denmark., Hansen PBL; Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark., Papapetropoulos A; Laboratory of Pharmacology, Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece.; Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation of the Academy of Athens, Athens, Greece., Stubbe J; Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark.
المصدر: Acta physiologica (Oxford, England) [Acta Physiol (Oxf)] 2023 Sep; Vol. 239 (1), pp. e14021. Date of Electronic Publication: 2023 Aug 09.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Wiley-Blackwell Country of Publication: England NLM ID: 101262545 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1748-1716 (Electronic) Linking ISSN: 17481708 NLM ISO Abbreviation: Acta Physiol (Oxf) Subsets: MEDLINE
أسماء مطبوعة: Publication: Oxford : Wiley-Blackwell
Original Publication: Oxford : Blackwell Pub., c2006-4
مواضيع طبية MeSH: Arterioles*/drug effects , Arterioles*/metabolism , Cystathionine gamma-Lyase*/antagonists & inhibitors , Cystathionine gamma-Lyase*/metabolism , Enzyme Inhibitors*/pharmacology , Vasoconstriction*, Animals ; Humans ; Mice ; Hydrogen Sulfide/metabolism ; Mice, Inbred C57BL
مستخلص: Aim: In extracerebral vascular beds cystathionine-gamma lyase (CSE) activity plays a vasodilatory role but the role of this hydrogen sulfide (H 2 S) producing enzyme in the intracerebral arterioles remain poorly understood. We hypothesized a similar function in the intracerebral arterioles.
Methods: Intracerebral arterioles were isolated from wild type C57BL/6J mouse (9-12 months old) brains and from human brain biopsies. The function (contractility and secondary dilatation) of the intracerebral arterioles was tested ex vivo by pressure myography using a perfusion set-up. Reverse transcription polymerase chain reaction was used for detecting CSE expression.
Results: CSE is expressed in human and mouse intracerebral arterioles. CSE inhibition with L-propargylglycine (PAG) significantly dampened the K + -induced vasoconstriction in intracerebral arterioles of both species (% of maximum contraction: in human control: 45.4 ± 2.7 versus PAG: 27 ± 5.2 and in mouse control: 50 ± 1.5 versus PAG: 33 ± 5.2) but did not affect the secondary dilatation. This effect of PAG was significantly reversed by the H 2 S donor sodium hydrosulfide (NaSH) in human (PAG + NaSH: 38.8 ± 7.2) and mouse (PAG + NaSH: 41.7 ± 3.1) arterioles, respectively. The endothelial NO synthase (eNOS) inhibitor, Nω-Nitro-l-arginine methyl ester (L-NAME), and the inhibitor of soluble guanylate cyclase (sGC), 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ) reversed the effect of PAG on the K + -induced vasoconstriction in the mouse arterioles and attenuated the K + -induced secondary dilatation significantly.
Conclusion: CSE contributes to the K + -induced vasoconstriction via a mechanism involving H 2 S, eNOS, and sGC whereas the secondary dilatation is regulated by eNOS and sGC but not by CSE.
(© 2023 The Authors. Acta Physiologica published by John Wiley & Sons Ltd on behalf of Scandinavian Physiological Society.)
References: Szabo C, Papapetropoulos A. International Union of Basic and Clinical Pharmacology. CII: pharmacological modulation of H2S levels: H2S donors and H2S biosynthesis inhibitors. Pharmacol Rev. 2017;69(4):497-564.
Peleli M, Zampas P, Papapetropoulos A. Hydrogen sulfide and the kidney: physiological roles, contribution to pathophysiology, and therapeutic potential. Antioxid Redox Signal. 2022;36(4-6):220-243.
Goodwin LR, Francom D, Dieken FP, et al. Determination of sulfide in brain tissue by gas dialysis/ion chromatography: postmortem studies and two case reports. J Anal Toxicol. 1989;13(2):105-109.
Qu K, Chen CPLH, Halliwell B, Moore PK, Wong PTH. Hydrogen sulfide is a mediator of cerebral ischemic damage. Stroke. 2006;37(3):889-893.
Yang G, Wu L, Jiang B, et al. H2S as a physiologic vasorelaxant: hypertension in mice with deletion of cystathionine gamma-lyase. Science. 2008;322(5901):587-590.
Peleli M, Bibli SI, Li Z, et al. Cardiovascular phenotype of mice lacking 3-mercaptopyruvate sulfurtransferase. Biochem Pharmacol. 2020;176:113833.
Xia H, Li Z, Sharp TE III, et al. Endothelial cell cystathionine gamma-lyase expression level modulates exercise capacity, vascular function, and myocardial ischemia reperfusion injury. J Am Heart Assoc. 2020;9(19):e017544.
Winther AK, Dalsgaard T, Hedegaard ER, Simonsen U. Involvement of hydrogen sulfide in perivascular and hypoxia-induced inhibition of endothelin contraction in porcine retinal arterioles. Nitric Oxide. 2015;50:1-9.
Skovgaard N, Gouliaev A, Aalling M, Simonsen U. The role of endogenous H2S in cardiovascular physiology. Curr Pharm Biotechnol. 2011;12(9):1385-1393.
Dominy JE, Stipanuk MH. New roles for cysteine and transsulfuration enzymes: production of H2S, a neuromodulator and smooth muscle relaxant. Nutr Rev. 2004;62(9):348-353.
Cheng Y, Ndisang JF, Tang G, Cao K, Wang R. Hydrogen sulfide-induced relaxation of resistance mesenteric artery beds of rats. Am J Physiol Heart Circ Physiol. 2004;287(5):H2316-H2323.
Köhn C, Schleifenbaum J, Szijártó IA, et al. Differential effects of cystathionine-gamma-lyase-dependent vasodilatory H2S in periadventitial vasoregulation of rat and mouse aortas. PLoS One. 2012;7(8):e41951.
Centeno JM, López-Morales MA, Aliena-Valero A, et al. Potassium channels contribute to the increased sensitivity of the rabbit carotid artery to hydrogen sulfide in diabetes. Eur J Pharmacol. 2019;853:33-40.
Hedegaard ER, Nielsen BD, Kun A, et al. KV 7 channels are involved in hypoxia-induced vasodilatation of porcine coronary arteries. Br J Pharmacol. 2014;171(1):69-82.
White BJ, Smith PA, Dunn WR. Hydrogen sulphide-mediated vasodilatation involves the release of neurotransmitters from sensory nerves in pressurized mesenteric small arteries isolated from rats. Br J Pharmacol. 2013;168(4):785-793.
Kanagy NL, Szabo C, Papapetropoulos A. Vascular biology of hydrogen sulfide. Am J Physiol Cell Physiol. 2017;312(5):C537-C549.
Wang R, Szabo C, Ichinose F, Ahmed A, Whiteman M, Papapetropoulos A. The role of H2S bioavailability in endothelial dysfunction. Trends Pharmacol Sci. 2015;36(9):568-578.
Cirino G, Szabo C, Papapetropoulos A. Physiological roles of hydrogen sulfide in mammalian cells, tissues and organs. Physiol Rev. 2022;103:31-276.
Patel S, Fedinec AL, Liu J, et al. H2S mediates the vasodilator effect of endothelin-1 in the cerebral circulation. Am J Physiol Heart Circ Physiol. 2018;315(6):H1759-H1764.
Dongo E, Kiss L. The potential role of hydrogen sulfide in the regulation of cerebrovascular tone. Biomolecules. 2020;10(12), 1685.
Leffler CW, Parfenova H, Basuroy S, Jaggar JH, Umstot ES, Fedinec AL. Hydrogen sulfide and cerebral microvascular tone in newborn pigs. Am J Physiol Heart Circ Physiol. 2011;300(2):H440-H447.
Liang GH, Adebiyi A, Leo MD, McNally EM, Leffler CW, Jaggar JH. Hydrogen sulfide dilates cerebral arterioles by activating smooth muscle cell plasma membrane KATP channels. Am J Physiol Heart Circ Physiol. 2011;300(6):H2088-H2095.
Liang GH, Xi Q, Leffler CW, Jaggar JH. Hydrogen sulfide activates Ca(2)(+) sparks to induce cerebral arteriole dilatation. J Physiol. 2012;590(11):2709-2720.
Nishimura N, Schaffer CB, Friedman B, Lyden PD, Kleinfeld D. Penetrating arterioles are a bottleneck in the perfusion of neocortex. Proc Natl Acad Sci U S A. 2007;104(1):365-370.
Iadecola C, Davisson RL. Hypertension and cerebrovascular dysfunction. Cell Metab. 2008;7(6):476-484.
Kilkenny C, Browne W, Cuthill IC, Emerson M, Altman DG, NC3Rs Reporting Guidelines Working Group. Animal research: reporting in vivo experiments: the ARRIVE guidelines. Br J Pharmacol. 2010;160(7):1577-1579.
Thuesen AD, Lyngsø KS, Rasmussen L, et al. P/Q-type and T-type voltage-gated calcium channels are involved in the contraction of mammary and brain blood vessels from hypertensive patients. Acta Physiol (Oxf). 2017;219(3):640-651.
Lyngsø KS, Rom Poulsen F, Hansen PBL. Chronic aldosterone exposure inhibits nitric oxide-dependent dilatation in human and mouse intracerebral arterioles. Acta Physiologica. 2015;215:12.
Tian XY, Wong WT, Sayed N, et al. NaHS relaxes rat cerebral artery in vitro via inhibition of l-type voltage-sensitive Ca2+ channel. Pharmacol Res. 2012;65(2):239-246.
Mitidieri E, Vellecco V, Brancaleone V, et al. Involvement of 3′,5′-cyclic inosine monophosphate in cystathionine gamma-lyase-dependent regulation of the vascular tone. Br J Pharmacol. 2021;178(18):3765-3782.
Prieto-Lloret J, Aaronson PI. Potentiation of hypoxic pulmonary vasoconstriction by hydrogen sulfide precursors 3-mercaptopyruvate and D-cysteine is blocked by the cystathionine gamma lyase inhibitor propargylglycine. Adv Exp Med Biol. 2015;860:81-87.
Whiteman M, le Trionnaire S, Chopra M, Fox B, Whatmore J. Emerging role of hydrogen sulfide in health and disease: critical appraisal of biomarkers and pharmacological tools. Clin Sci (Lond). 2011;121(11):459-488.
Asimakopoulou A, Panopoulos P, Chasapis CT, et al. Selectivity of commonly used pharmacological inhibitors for cystathionine beta synthase (CBS) and cystathionine gamma lyase (CSE). Br J Pharmacol. 2013;169(4):922-932.
Papapetropoulos A, Whiteman M, Cirino G. Pharmacological tools for hydrogen sulphide research: a brief, introductory guide for beginners. Br J Pharmacol. 2015;172(6):1633-1637.
Ariyaratnam P, Loubani M, Morice AH. Hydrogen sulphide vasodilates human pulmonary arteries: a possible role in pulmonary hypertension? Microvasc Res. 2013;90:135-137.
Webb GD, Lim LH, Oh VMS, et al. Contractile and vasorelaxant effects of hydrogen sulfide and its biosynthesis in the human internal mammary artery. J Pharmacol Exp Ther. 2008;324(2):876-882.
Coletta C, Papapetropoulos A, Erdelyi K, et al. Hydrogen sulfide and nitric oxide are mutually dependent in the regulation of angiogenesis and endothelium-dependent vasorelaxation. Proc Natl Acad Sci U S A. 2012;109(23):9161-9166.
Predmore BL, Julian D, Cardounel AJ. Hydrogen sulfide increases nitric oxide production from endothelial cells by an akt-dependent mechanism. Front Physiol. 2011;2:104.
Altaany Z, Ju YJ, Yang G, Wang R. The coordination of S-sulfhydration, S-nitrosylation, and phosphorylation of endothelial nitric oxide synthase by hydrogen sulfide. Sci Signal. 2014;7(342):p. ra87.
Bucci M, Papapetropoulos A, Vellecco V, et al. Hydrogen sulfide is an endogenous inhibitor of phosphodiesterase activity. Arterioscler Thromb Vasc Biol. 2010;30(10):1998-2004.
Ping NN, Li S, Mi YN, Cao L, Cao YX. Hydrogen sulphide induces vasoconstriction of rat coronary artery via activation of Ca(2+) influx. Acta Physiol (Oxf). 2015;214(1):88-96.
Szijártó IA, Markó L, Filipovic MR. Cystathionine gamma-lyase-produced hydrogen sulfide controls endothelial NO bioavailability and blood pressure. Hypertension. 2018;71(6):1210-1217.
Cipolla, M.J. The Cerebral Circulation. Morgan & Claypool Life Sciences; 2009.
Yagi K, Lidington D, Wan H, et al. Therapeutically targeting tumor necrosis factor-alpha/sphingosine-1-phosphate signaling corrects myogenic reactivity in subarachnoid hemorrhage. Stroke. 2015;46(8):2260-2270.
Geary GG, Krause DN, Duckles SP. Estrogen reduces mouse cerebral artery tone through endothelial NOS- and cyclooxygenase-dependent mechanisms. Am J Physiol Heart Circ Physiol. 2000;279(2):H511-H519.
Uhrenholt TR, Schjerning J, Vanhoutte PM, Jensen BL, Skøtt O. Intercellular calcium signaling and nitric oxide feedback during constriction of rabbit renal afferent arterioles. Am J Physiol Renal Physiol. 2007;292(4):F1124-F1131.
Chen K, Pittman RN, Popel AS. Nitric oxide in the vasculature: where does it come from and where does it go? A quantitative perspective. Antioxid Redox Signal. 2008;10(7):1185-1198.
Wong PT, Qu K, Chimon GN, et al. High plasma cyst(e)ine level may indicate poor clinical outcome in patients with acute stroke: possible involvement of hydrogen sulfide. J Neuropathol Exp Neurol. 2006;65(2):109-115.
Hill RA, Tong L, Yuan P, Murikinati S, Gupta S, Grutzendler J. Regional blood flow in the normal and ischemic brain is controlled by arteriolar smooth muscle cell contractility and not by capillary pericytes. Neuron. 2015;87(1):95-110.
فهرسة مساهمة: Keywords: contractility; cystathionine-gamma lyase; endothelial NO synthase; hydrogen sulfide; intracerebral arterioles; soluble guanylate cyclase
المشرفين على المادة: EC 4.4.1.1 (Cystathionine gamma-Lyase)
0 (Enzyme Inhibitors)
YY9FVM7NSN (Hydrogen Sulfide)
تواريخ الأحداث: Date Created: 20230809 Date Completed: 20230901 Latest Revision: 20231012
رمز التحديث: 20240628
DOI: 10.1111/apha.14021
PMID: 37555636
قاعدة البيانات: MEDLINE
الوصف
تدمد:1748-1716
DOI:10.1111/apha.14021