دورية أكاديمية

Healthy ageing and cognitive impairment alter EEG functional connectivity in distinct frequency bands.

التفاصيل البيبلوغرافية
العنوان: Healthy ageing and cognitive impairment alter EEG functional connectivity in distinct frequency bands.
المؤلفون: Kumar WS; Centre for Neuroscience, Indian Institute of Science, Bengaluru, India., Ray S; Centre for Neuroscience, Indian Institute of Science, Bengaluru, India.
المصدر: The European journal of neuroscience [Eur J Neurosci] 2023 Sep; Vol. 58 (6), pp. 3432-3449. Date of Electronic Publication: 2023 Aug 10.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Wiley-Blackwell Country of Publication: France NLM ID: 8918110 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1460-9568 (Electronic) Linking ISSN: 0953816X NLM ISO Abbreviation: Eur J Neurosci Subsets: MEDLINE
أسماء مطبوعة: Publication: : Oxford : Wiley-Blackwell
Original Publication: Oxford, UK : Published on behalf of the European Neuroscience Association by Oxford University Press, c1989-
مواضيع طبية MeSH: Healthy Aging* , Cognitive Dysfunction* , Cognition Disorders* , Alzheimer Disease*, Humans ; Aged ; Brain ; Electroencephalography/methods
مستخلص: Functional connectivity (FC) indicates the interdependencies between brain signals recorded from spatially distinct locations in different frequency bands, which is modulated by cognitive tasks and is known to change with ageing and cognitive disorders. Recently, the power of narrow-band gamma oscillations induced by visual gratings have been shown to reduce with both healthy ageing and in subjects with mild cognitive impairment (MCI). However, the impact of ageing/MCI on stimulus-induced gamma FC has not been well studied. We recorded electroencephalogram (EEG) from a large cohort (N = 229) of elderly subjects (>49 years) while they viewed large cartesian gratings to induce gamma oscillations and studied changes in alpha and gamma FC with healthy ageing (N = 218) and MCI (N = 11). Surprisingly, we found distinct differences across age and MCI groups in power and FC. With healthy ageing, alpha power did not change but FC decreased significantly. MCI reduced gamma but not alpha FC significantly compared with age and gender matched controls, even when power was matched between the two groups. Overall, our results suggest distinct effects of ageing and disease on EEG power and FC, suggesting different mechanisms underlying ageing and cognitive disorders.
(© 2023 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.)
References: Aggarwal, S., & Ray, S. (2023). Slope of the power spectral density flattens at low frequencies (<150 Hz) with healthy aging but also steepens at higher frequency (>200 Hz) in human electroencephalogram. Cerebral Cortex Communications, 4, tgad011. https://doi.org/10.1093/texcom/tgad011.
Alba, G., Vila, J., Miranda, J. G. V., Montoya, P., & Muñoz, M. A. (2022). Tonic pain reduces autonomic responses and EEG functional connectivity elicited by affective stimuli. Psychophysiology, 59, e14018. https://doi.org/10.1111/psyp.14018.
Bartos, M., Vida, I., & Jonas, P. (2007). Synaptic mechanisms of synchronized gamma oscillations in inhibitory interneuron networks. Nature Reviews. Neuroscience, 8, 45-56. https://doi.org/10.1038/nrn2044.
Barzegaran, E., van Damme, B., Meuli, R., & Knyazeva, M. G. (2016). Perception-related EEG is more sensitive to Alzheimer's disease effects than resting EEG. Neurobiology of Aging, 43, 129-139. https://doi.org/10.1016/j.neurobiolaging.2016.03.032.
Berendse, H. W., Verbunt, J. P. A., Scheltens, P., van Dijk, B. W., & Jonkman, E. J. (2000). Magnetoencephalographic analysis of cortical activity in Alzheimer's disease: A pilot study. Clinical Neurophysiology, 111, 604-612. https://doi.org/10.1016/S1388-2457(99)00309-0.
Bi, D., Wen, L., Wu, Z., & Shen, Y. (2020). GABAergic dysfunction in excitatory and inhibitory (E/I) imbalance drives the pathogenesis of Alzheimer's disease. Alzheimer's & Dementia, 16, 1312-1329. https://doi.org/10.1002/alz.12088.
Bullmore, E., & Sporns, O. (2012). The economy of brain network organization. Nature Reviews. Neuroscience, 13, 336-349. https://doi.org/10.1038/nrn3214.
Churchland, M. M., Yu, B. M., Cunningham, J. P., Sugrue, L. P., Cohen, M. R., Corrado, G. S., Newsome, W. T., Clark, A. M., Hosseini, P., Scott, B. B., Bradley, D. C., Smith, M. A., Kohn, A., Movshon, J. A., Armstrong, K. M., Moore, T., Chang, S. W., Snyder, L. H., Lisberger, S. G., … Shenoy, K. V. (2010). Stimulus onset quenches neural variability: A widespread cortical phenomenon. Nature Neuroscience, 13, 369-378. https://doi.org/10.1038/nn.2501.
Dai, Z., Yan, C., Li, K., Wang, Z., Wang, J., Cao, M., Lin, Q., Shu, N., Xia, M., Bi, Y., & He, Y. (2015). Identifying and mapping connectivity patterns of brain network hubs in Alzheimer's disease. Cerebral Cortex, 25, 3723-3742. https://doi.org/10.1093/cercor/bhu246.
Delorme, A., & Makeig, S. (2004). EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. Journal of Neuroscience Methods, 134, 9-21. https://doi.org/10.1016/j.jneumeth.2003.10.009.
Demuru, M., La Cava, S. M., Pani, S. M., & Fraschini, M. (2020). A comparison between power spectral density and network metrics: An EEG study. Biomedical Signal Processing and Control, 57, 101760. https://doi.org/10.1016/j.bspc.2019.101760.
Donoghue, T., Schaworonkow, N., & Voytek, B. (2022). Methodological considerations for studying neural oscillations. The European Journal of Neuroscience, 55, 3502-3527. https://doi.org/10.1111/ejn.15361.
Duan, W., Chen, X., Wang, Y.-J., Zhao, W., Yuan, H., & Lei, X. (2021). Reproducibility of power spectrum, functional connectivity and network construction in resting-state EEG. Journal of Neuroscience Methods, 348, 108985. https://doi.org/10.1016/j.jneumeth.2020.108985.
Edde, M., Leroux, G., Altena, E., & Chanraud, S. (2021). Functional brain connectivity changes across the human life span: From fetal development to old age. Journal of Neuroscience Research, 99, 236-262. https://doi.org/10.1002/jnr.24669.
Engel, A. K., Konig, P., Kreiter, A. K., & Singer, W. (1991). Interhemispheric synchronization of oscillatory neuronal responses in cat visual cortex. Science, 252, 1177-1179. https://doi.org/10.1126/science.252.5009.1177.
Farina, F. R., Pragulbickaitė, G., Bennett, M., Judd, C., Walsh, K., Mitchell, S., O'Connell, R. G., & Whelan, R. (2020). Contralateral delay activity is not a robust marker of cognitive function in older adults at risk of mild cognitive impairment. The European Journal of Neuroscience, 51, 2367-2375. https://doi.org/10.1111/ejn.14652.
Fide, E., Yerlikaya, D., Güntekin, B., Babiloni, C., & Yener, G. G. (2022). Coherence in event-related EEG oscillations in patients with Alzheimer's disease dementia and amnestic mild cognitive impairment. Cognitive Neurodynamics. https://doi.org/10.1007/s11571-022-09920-0.
Fingelkurts, A. A., Fingelkurts, A. A., & Kähkönen, S. (2005). Functional connectivity in the brain-Is it an elusive concept? Neuroscience and Biobehavioral Reviews, 28, 827-836. https://doi.org/10.1016/j.neubiorev.2004.10.009.
Finnigan, S., & Robertson, I. H. (2011). Resting EEG theta power correlates with cognitive performance in healthy older adults. Psychophysiology, 48, 1083-1087. https://doi.org/10.1111/j.1469-8986.2010.01173.x.
Friston, K. J. (1996). Theoretical neurobiology and schizophrenia. British Medical Bulletin, 52, 644-655. https://doi.org/10.1093/oxfordjournals.bmb.a011573.
Gómez, C., Pérez-Macías, J. M., Poza, J., Fernández, A., & Hornero, R. (2013). Spectral changes in spontaneous MEG activity across the lifespan. Journal of Neural Engineering, 10, 066006. https://doi.org/10.1088/1741-2560/10/6/066006.
Gray, C. M., König, P., Engel, A. K., & Singer, W. (1989). Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties. Nature, 338, 334-337. https://doi.org/10.1038/338334a0.
Heitger, M. H., Ronsse, R., Dhollander, T., Dupont, P., Caeyenberghs, K., & Swinnen, S. P. (2012). Motor learning-induced changes in functional brain connectivity as revealed by means of graph-theoretical network analysis. NeuroImage, 61, 633-650. https://doi.org/10.1016/j.neuroimage.2012.03.067.
Hinkley, L. B. N., Vinogradov, S., Guggisberg, A. G., Fisher, M., Findlay, A. M., & Nagarajan, S. S. (2011). Clinical symptoms and alpha band resting-state functional connectivity imaging in patients with schizophrenia: Implications for novel approaches to treatment. Biol. Psychiatry, Copy Number Variants and Schizophrenia Risk, 70, 1134-1142. https://doi.org/10.1016/j.biopsych.2011.06.029.
Ishii, R., Canuet, L., Aoki, Y., Hata, M., Iwase, M., Ikeda, S., Nishida, K., & Ikeda, M. (2017). Healthy and pathological brain aging: From the perspective of oscillations, functional connectivity, and signal complexity. Neuropsychobiology, 75, 151-161. https://doi.org/10.1159/000486870.
Jarosz, A., & Wiley, J. (2014). What are the odds? A practical guide to computing and reporting Bayes factors. The Journal of Problem Solving, 7, 7. https://doi.org/10.7771/1932-6246.1167.
Jeffreys, H. (1998). The Theory of Probability. OUP Oxford.
Jia, X., Xing, D., & Kohn, A. (2013). No consistent relationship between gamma power and peak frequency in macaque primary visual cortex. The Journal of Neuroscience, 33, 17-25. https://doi.org/10.1523/JNEUROSCI.1687-12.2013.
Kayser, J., & Tenke, C. E. (2015). Issues and considerations for using the scalp surface Laplacian in EEG/ERP research: A tutorial review. Journal of Psychophysiology, 97, 189-209. https://doi.org/10.1016/j.ijpsycho.2015.04.012.
Krekelberg, B. (2021) Bayes factor.
Kumar, W. S., Manikandan, K., Murty, D. V. P. S., Ramesh, R. G., Purokayastha, S., Javali, M., Rao, N. P., & Ray, S. (2022). Stimulus-induced narrowband gamma oscillations are test-retest reliable in human EEG. Cereb. Cortex Commun., 3, tgab066. https://doi.org/10.1093/texcom/tgab066.
Lachaux, J.-P., Rodriguez, E., le van Quyen, M., Lutz, A., Martinerie, J., & Varela, F. J. (2000). Studying single-trials of phase synchronous activity in the brain. International Journal of Bifurcation and Chaos, 10, 2429-2439. https://doi.org/10.1142/S0218127400001560.
Lachaux, J. P., Rodriguez, E., Martinerie, J., Adam, C., & Varela, F. (1998). Synchrony in gamma-band oscillations in human Intracortical recordings during visual discrimination. NeuroImage, 7, S303. https://doi.org/10.1016/S1053-8119(18)31136-4.
Li, Y., Cao, D., Wei, L., Tang, Y., & Wang, J. (2015). Abnormal functional connectivity of EEG gamma band in patients with depression during emotional face processing. Clinical Neurophysiology, 126, 2078-2089. https://doi.org/10.1016/j.clinph.2014.12.026.
Liddell, B. J., Paul, R. H., Arns, M., Gordon, N., Kukla, M., Rowe, D., Cooper, N., Moyle, J., & Williams, L. M. (2007). Rates of decline distinguish alzheimer's disease and mild cognitive impairment relative to normal aging: Integrating cognition and brain function. Journal of Integrative Neuroscience, 06, 141-174. https://doi.org/10.1142/S0219635207001374.
Mcintosh, A. R. (1999). Mapping cognition to the brain through neural interactions. Memory, 7, 523-548. https://doi.org/10.1080/096582199387733.
Meghdadi, A. H., Karić, M. S., McConnell, M., Rupp, G., Richard, C., Hamilton, J., Salat, D., & Berka, C. (2021). Resting state EEG biomarkers of cognitive decline associated with Alzheimer's disease and mild cognitive impairment. PLoS ONE, 16, e0244180. https://doi.org/10.1371/journal.pone.0244180.
Moezzi, B., Pratti, L. M., Hordacre, B., Graetz, L., Berryman, C., Lavrencic, L. M., Ridding, M. C., Keage, H. A. D., McDonnell, M. D., & Goldsworthy, M. R. (2019). Characterization of young and old adult brains: An EEG functional connectivity analysis. Neuroscience, 422, 230-239. https://doi.org/10.1016/j.neuroscience.2019.08.038.
Murty, D. V., Manikandan, K., Kumar, W. S., Ramesh, R. G., Purokayastha, S., Nagendra, B., ML, A., Balakrishnan, A., Javali, M., Rao, N. P., & Ray, S. (2021). Stimulus-induced gamma rhythms are weaker in human elderly with mild cognitive impairment and Alzheimer's disease. eLife, 10, e61666. https://doi.org/10.7554/eLife.61666.
Murty, D. V. P. S., Manikandan, K., Kumar, W. S., Ramesh, R. G., Purokayastha, S., Javali, M., Rao, N. P., & Ray, S. (2020). Gamma oscillations weaken with age in healthy elderly in human EEG. NeuroImage, 215, 116826. https://doi.org/10.1016/j.neuroimage.2020.116826.
Murty, D. V. P. S., & Ray, S. (2022). Stimulus-induced robust narrow-band gamma oscillations in human EEG using Cartesian gratings. Bio-Protocol, 12, e4379. https://doi.org/10.21769/BioProtoc.4379.
Murty, D. V. P. S., Shirhatti, V., Ravishankar, P., & Ray, S. (2018). Large visual stimuli induce two distinct gamma oscillations in primate visual cortex. The Journal of Neuroscience, 38, 2730-2744. https://doi.org/10.1523/JNEUROSCI.2270-17.2017.
Naggara, O., Raymond, J., Guilbert, F., Roy, D., Weill, A., & Altman, D. G. (2011). Analysis by categorizing or dichotomizing continuous variables is inadvisable: An example from the natural history of unruptured aneurysms. American Journal of Neuroradiology, 32, 437-440. https://doi.org/10.3174/ajnr.A2425.
Nentwich, M., Ai, L., Madsen, J., Telesford, Q. K., Haufe, S., Milham, M. P., & Parra, L. C. (2020). Functional connectivity of EEG is subject-specific, associated with phenotype, and different from fMRI. NeuroImage, 218, 117001. https://doi.org/10.1016/j.neuroimage.2020.117001.
Nolte, G., Bai, O., Wheaton, L., Mari, Z., Vorbach, S., & Hallett, M. (2004). Identifying true brain interaction from EEG data using the imaginary part of coherency. Clinical Neurophysiology, 115, 2292-2307. https://doi.org/10.1016/j.clinph.2004.04.029.
Nunez, P. L., Srinivasan, R., Westdorp, A. F., Wijesinghe, R. S., Tucker, D. M., Silberstein, R. B., & Cadusch, P. J. (1997). EEG coherency: I: Statistics, reference electrode, volume conduction, Laplacians, cortical imaging, and interpretation at multiple scales. Electroencephalography and Clinical Neurophysiology, 103, 499-515. https://doi.org/10.1016/S0013-4694(97)00066-7.
Olichney, J. M., Morris, S. K., Ochoa, C., Salmon, D. P., Thal, L. J., Kutas, M., & Iragui, V. J. (2002). Abnormal verbal event related potentials in mild cognitive impairment and incipient Alzheimer's disease. Journal of Neurology, Neurosurgery, and Psychiatry, 73, 377-384. https://doi.org/10.1136/jnnp.73.4.377.
Oostenveld, R., Fries, P., Maris, E., & Schoffelen, J.-M. (2010). FieldTrip: Open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data [WWW document]. Computational Intelligence and Neuroscience URL, 2011, 1-9. https://www.hindawi.com/journals/cin/2011/156869/, https://doi.org/10.1155/2011/156869.
Orekhova, E. V., Butorina, A. V., Sysoeva, O. V., Prokofyev, A. O., Nikolaeva, A. Y., & Stroganova, T. A. (2015). Frequency of gamma oscillations in humans is modulated by velocity of visual motion. Journal of Neurophysiology, 114, 244-255. https://doi.org/10.1152/jn.00232.2015.
Pantazis, D., Fang, M., Qin, S., Mohsenzadeh, Y., Li, Q., & Cichy, R. M. (2018). Decoding the orientation of contrast edges from MEG evoked and induced responses. Neuro Image, 180, 267-279. https://doi.org/10.1016/j.neuroimage.2017.07.022.
Pathak, A., Sharma, V., Roy, D., & Banerjee, A. (2022). Biophysical mechanism underlying compensatory preservation of neural synchrony over the adult lifespan. Communications Biology, 5, 1-12.
Penttilä, M., Partanen, J. V., Soininen, H., & Riekkinen, P. J. (1985). Quantitative analysis of occipital EEG in different stages of Alzheimer's disease. Electroencephalography and Clinical Neurophysiology, 60, 1-6. https://doi.org/10.1016/0013-4694(85)90942-3.
Petrache, A. L., Rajulawalla, A., Shi, A., Wetzel, A., Saito, T., Saido, T. C., Harvey, K., & Ali, A. B. (2019). Aberrant excitatory-inhibitory synaptic mechanisms in entorhinal cortex microcircuits during the pathogenesis of Alzheimer's disease. Cerebral Cortex, 29, 1834-1850. https://doi.org/10.1093/cercor/bhz016.
Quandt, F., Fischer, F., Schröder, J., Heinze, M., Lettow, I., Frey, B. M., Kessner, S. S., Schulz, M., Higgen, F. L., Cheng, B., Gerloff, C., & Thomalla, G. (2020). Higher white matter hyperintensity lesion load is associated with reduced long-range functional connectivity. Brain Commun., 2, fcaa111. https://doi.org/10.1093/braincomms/fcaa111.
Ranasinghe, K. G., Verma, P., Cai, C., Xie, X., Kudo, K., Gao, X., Lerner, H., Mizuiri, D., Strom, A., Iaccarino, L., la Joie, R., Miller, B. L., Gorno-Tempini, M. L., Rankin, K. P., Jagust, W. J., Vossel, K., Rabinovici, G. D., Raj, A., & Nagarajan, S. S. (2022). Altered excitatory and inhibitory neuronal subpopulation parameters are distinctly associated with tau and amyloid in Alzheimer's disease. eLife, 11, e77850. https://doi.org/10.7554/eLife.77850.
Ray, S., & Maunsell, J. H. R. (2011). Different origins of gamma rhythm and high-gamma activity in macaque visual cortex. PLoS Biology, 9, e1000610. https://doi.org/10.1371/journal.pbio.1000610.
Regression. (2009). Robust Statistics (pp. 149-198). John Wiley & Sons, Ltd.
Rodinskaia, D., Radinski, C., & Labuhn, J. (2022). EEG coherence as a marker of functional connectivity disruption in Alzheimer's disease. Aging and Health Research, 2, 100098. https://doi.org/10.1016/j.ahr.2022.100098.
Rouder, J. N., Morey, R. D., Speckman, P. L., & Province, J. M. (2012). Default Bayes factors for ANOVA designs. Journal of Mathematical Psychology, 56, 356-374. https://doi.org/10.1016/j.jmp.2012.08.001.
Safar, K., Yuk, V., Wong, S. M., Leung, R. C., Anagnostou, E., & Taylor, M. J. (2020). Emotional face processing in autism spectrum disorder: Effects in gamma connectivity. Biological Psychology, 149, 107774. https://doi.org/10.1016/j.biopsycho.2019.107774.
Sanderson, W. C., & Scherbov, S. (2008). Rethinking Age and Aging. Population Reference Bureau.
Sareen, E., Zahar, S., Ville, D. V. D., Gupta, A., Griffa, A., & Amico, E. (2021). Exploring MEG brain fingerprints: Evaluation, pitfalls, and interpretations. NeuroImage, 240, 118331. https://doi.org/10.1016/j.neuroimage.2021.118331.
Scally, B., Burke, M. R., Bunce, D., & Delvenne, J.-F. (2018). Resting-state EEG power and connectivity are associated with alpha peak frequency slowing in healthy aging. Neurobiology of Aging, 71, 149-155. https://doi.org/10.1016/j.neurobiolaging.2018.07.004.
Siegel, M., Donner, T. H., & Engel, A. K. (2012). Spectral fingerprints of large-scale neuronal interactions. Nature Reviews. Neuroscience, 13, 121-134. https://doi.org/10.1038/nrn3137.
Srinivasan, R., Winter, W. R., Ding, J., & Nunez, P. L. (2007). EEG and MEG coherence: Measures of functional connectivity at distinct spatial scales of neocortical dynamics. Journal of Neuroscience Methods, 166, 41-52. https://doi.org/10.1016/j.jneumeth.2007.06.026.
Stam, C. J., de Haan, W., Daffertshofer, A., Jones, B. F., Manshanden, I., van Cappellen van Walsum, A. M., Montez, T., Verbunt, J. P. A., de Munck, J. C., van Dijk, B. W., Berendse, H. W., & Scheltens, P. (2009). Graph theoretical analysis of magnetoencephalographic functional connectivity in Alzheimer's disease. Brain, 132, 213-224. https://doi.org/10.1093/brain/awn262.
Stam, C. J., Nolte, G., & Daffertshofer, A. (2007). Phase lag index: Assessment of functional connectivity from multi channel EEG and MEG with diminished bias from common sources. Human Brain Mapping, 28, 1178-1193. https://doi.org/10.1002/hbm.20346.
Sullivan, M. D., Anderson, J. A. E., Turner, G. R., & Spreng, R. N. (2019). Intrinsic neurocognitive network connectivity differences between normal aging and mild cognitive impairment are associated with cognitive status and age. Neurobiology of Aging, 73, 219-228. https://doi.org/10.1016/j.neurobiolaging.2018.10.001.
Takahashi, T., Cho, R. Y., Mizuno, T., Kikuchi, M., Murata, T., Takahashi, K., & Wada, Y. (2010). Antipsychotics reverse abnormal EEG complexity in drug-naive schizophrenia: A multiscale entropy analysis. NeuroImage, 51, 173-182. https://doi.org/10.1016/j.neuroimage.2010.02.009.
Tallon-Baudry, C., & Bertrand, O. (1999). Oscillatory gamma activity in humans and its role in object representation. Trends in Cognitive Sciences, 3, 151-162. https://doi.org/10.1016/S1364-6613(99)01299-1.
Uhlhaas, P. J., & Singer, W. (2006). Neural synchrony in brain disorders: Relevance for cognitive dysfunctions and pathophysiology. Neuron, 52, 155-168. https://doi.org/10.1016/j.neuron.2006.09.020.
van Diessen, E., Numan, T., van Dellen, E., van der Kooi, A. W., Boersma, M., Hofman, D., van Lutterveld, R., van Dijk, B. W., van Straaten, E. C. W., Hillebrand, A., & Stam, C. J. (2015). Opportunities and methodological challenges in EEG and MEG resting state functional brain network research. Clinical Neurophysiology, 126, 1468-1481. https://doi.org/10.1016/j.clinph.2014.11.018.
Van Vliet, M., Liljeström, M., Aro, S., Salmelin, R., & Kujala, J. (2018). Analysis of functional connectivity and oscillatory power using DICS: From raw MEG data to group-level statistics in python. Frontiers in Neuroscience, 12, 586.
Veit, J., Hakim, R., Jadi, M. P., Sejnowski, T. J., & Adesnik, H. (2017). Cortical gamma band synchronization through somatostatin interneurons. Nature Neuroscience, 20, 951-959. https://doi.org/10.1038/nn.4562.
Vinck, M., van Wingerden, M., Womelsdorf, T., Fries, P., & Pennartz, C. M. A. (2010). The pairwise phase consistency: A bias-free measure of rhythmic neuronal synchronization. NeuroImage, 51, 112-122. https://doi.org/10.1016/j.neuroimage.2010.01.073.
Wang, X.-J. (2010). Neurophysiological and computational principles of cortical rhythms in cognition. Physiological Reviews, 90, 1195-1268. https://doi.org/10.1152/physrev.00035.2008.
معلومات مُعتمدة: United Kingdom WT_ Wellcome Trust
فهرسة مساهمة: Keywords: Alzheimer's disease; EEG; cluster shrinkage; functional connectivity; gamma oscillations; healthy ageing
تواريخ الأحداث: Date Created: 20230810 Date Completed: 20230920 Latest Revision: 20230920
رمز التحديث: 20231215
DOI: 10.1111/ejn.16114
PMID: 37559505
قاعدة البيانات: MEDLINE
الوصف
تدمد:1460-9568
DOI:10.1111/ejn.16114