دورية أكاديمية

Radiotherapy in bone sarcoma: the quest for better treatment option.

التفاصيل البيبلوغرافية
العنوان: Radiotherapy in bone sarcoma: the quest for better treatment option.
المؤلفون: Locquet MA; Cell Death and Pediatric Cancer Team, Cancer Initiation and Tumor Cell Identity Department, INSERM1052, CNRS5286, Cancer Research Center of Lyon, F-69008, Lyon, France., Brahmi M; Department of Medical Oncology, Centre Leon Berard, Unicancer Lyon, 69008, Lyon, France., Blay JY; Cell Death and Pediatric Cancer Team, Cancer Initiation and Tumor Cell Identity Department, INSERM1052, CNRS5286, Cancer Research Center of Lyon, F-69008, Lyon, France.; Department of Medical Oncology, Centre Leon Berard, Unicancer Lyon, 69008, Lyon, France.; Université Claude Bernard Lyon I, Lyon, France., Dutour A; Cell Death and Pediatric Cancer Team, Cancer Initiation and Tumor Cell Identity Department, INSERM1052, CNRS5286, Cancer Research Center of Lyon, F-69008, Lyon, France. aurelie.dutour@lyon.unicancer.fr.
المصدر: BMC cancer [BMC Cancer] 2023 Aug 11; Vol. 23 (1), pp. 742. Date of Electronic Publication: 2023 Aug 11.
نوع المنشور: Journal Article; Review
اللغة: English
بيانات الدورية: Publisher: BioMed Central Country of Publication: England NLM ID: 100967800 Publication Model: Electronic Cited Medium: Internet ISSN: 1471-2407 (Electronic) Linking ISSN: 14712407 NLM ISO Abbreviation: BMC Cancer Subsets: MEDLINE
أسماء مطبوعة: Original Publication: London : BioMed Central, [2001-
مواضيع طبية MeSH: Sarcoma*/radiotherapy , Sarcoma*/surgery , Osteosarcoma*/pathology , Bone Neoplasms*/radiotherapy , Bone Neoplasms*/pathology , Sarcoma, Ewing*/pathology , Chondrosarcoma*/radiotherapy , Chondrosarcoma*/surgery, Child ; Young Adult ; Humans
مستخلص: Bone sarcomas are rare tumors representing 0.2% of all cancers. While osteosarcoma and Ewing sarcoma mainly affect children and young adults, chondrosarcoma and chordoma have a preferential incidence in people over the age of 40. Despite this range in populations affected, all bone sarcoma patients require complex transdisciplinary management and share some similarities. The cornerstone of all bone sarcoma treatment is monobloc resection of the tumor with adequate margins in healthy surrounding tissues. Adjuvant chemo- and/or radiotherapy are often included depending on the location of the tumor, quality of resection or presence of metastases. High dose radiotherapy is largely applied to allow better local control in case of incomplete primary tumor resection or for unresectable tumors. With the development of advanced techniques such as proton, carbon ion therapy, radiotherapy is gaining popularity for the treatment of bone sarcomas, enabling the delivery of higher doses of radiation, while sparing surrounding healthy tissues. Nevertheless, bone sarcomas are radioresistant tumors, and some mechanisms involved in this radioresistance have been reported. Hypoxia for instance, can potentially be targeted to improve tumor response to radiotherapy and decrease radiation-induced cellular toxicity. In this review, the benefits and drawbacks of radiotherapy in bone sarcoma will be addressed. Finally, new strategies combining a radiosensitizing agent and radiotherapy and their applicability in bone sarcoma will be presented.
(© 2023. The Author(s).)
References: Soft Tissue and Bone Tumours. WHO Classification of Tumours, Volume 3. 5th ed. WHO Classification of Tumours Editorial Board; 2020.
Luetke A, Meyers PA, Lewis I, Juergens H. Osteosarcoma treatment - where do we stand? A state of the art review. Cancer Treat Rev. 2014;40:523–32. https://doi.org/10.1016/j.ctrv.2013.11.006 . (PMID: 10.1016/j.ctrv.2013.11.00624345772)
Strauss SJ, Frezza AM, Abecassis N, Bajpai J, Bauer S, Biagini R, Bielack S, Blay JY, Bolle S, Bonvalot S, et al. Bone sarcomas: ESMO-EURACAN-GENTURIS-ERN PaedCan clinical practice guideline for diagnosis, treatment and follow-Up. Ann Oncol. 2021;32:1520–36. https://doi.org/10.1016/j.annonc.2021.08.1995 . (PMID: 10.1016/j.annonc.2021.08.199534500044)
Riedel RF, Larrier N, Dodd L, Kirsch D, Martinez S, Brigman BE. The clinical management of chondrosarcoma. Curr Treat Options Oncol. 2009;10:94–106. https://doi.org/10.1007/s11864-009-0088-2 . (PMID: 10.1007/s11864-009-0088-219238552)
Heery CR. Chordoma: the quest for better treatment options. Oncol Ther. 2016;4:35–51. https://doi.org/10.1007/s40487-016-0016-0 . (PMID: 10.1007/s40487-016-0016-028261639)
Radaelli S, Fossati P, Stacchiotti S, Akiyama T, Asencio JM, Bandiera S, Boglione A, Boland P, Bolle S, Bruland Ø, et al. The sacral chordoma margin. Eur J Surg Oncol. 2020. https://doi.org/10.1016/j.ejso.2020.04.028 . (PMID: 10.1016/j.ejso.2020.04.02832402509)
Stacchiotti S, Sommer J. Chordoma global consensus group building a global consensus approach to chordoma: a position paper from the medical and patient community. Lancet Oncol. 2015;16:e71–83. https://doi.org/10.1016/S1470-2045(14)71190-8 . (PMID: 10.1016/S1470-2045(14)71190-825638683)
Stacchiotti S, Gronchi A, Fossati P, Akiyama T, Alapetite C, Baumann M, Blay JY, Bolle S, Boriani S, Bruzzi P, et al. Best practices for the management of local-regional recurrent chordoma: a position paper by the chordoma global consensus group. Ann Oncol. 2017;28:1230–42. https://doi.org/10.1093/annonc/mdx054 . (PMID: 10.1093/annonc/mdx054281844165452071)
Dial BL, Kerr DL, Lazarides AL, Catanzano AA, Green CL, Risoli T Jr, Blazer DG, Goodwin CR, Brigman BE, Eward WC, et al. The role of radiotherapy for chordoma patients managed with surgery: analysis of the national cancer database. Spine (Phila Pa 1976). 2020;45:E742–51. https://doi.org/10.1097/BRS.0000000000003406 . (PMID: 10.1097/BRS.000000000000340632032324)
Krochak R, Harwood AR, Cummings BJ, Quirt IC. Results of radical radiation for chondrosarcoma of bone. Radiother Oncol. 1983;1:109–15. https://doi.org/10.1016/s0167-8140(83)80014-0 . (PMID: 10.1016/s0167-8140(83)80014-06680216)
McNaney D, Lindberg RD, Ayala AG, Barkley HT, Hussey DH. Fifteen year radiotherapy experience with chondrosarcoma of bone. Int J Radiat Oncol Biol Phys. 1982;8:187–90. https://doi.org/10.1016/0360-3016(82)90512-0 . (PMID: 10.1016/0360-3016(82)90512-06806219)
Fujiwara T, Tsuda Y, Stevenson J, Parry M, Jeys L. Sacral chordoma: do the width of surgical margin and the use of photon/proton radiotherapy affect local disease control? Int Orthop. 2020;44:381–9. https://doi.org/10.1007/s00264-019-04460-5 . (PMID: 10.1007/s00264-019-04460-531863159)
Ares C, Hug EB, Lomax AJ, Bolsi A, Timmermann B, Rutz HP, Schuller JC, Pedroni E, Goitein G. Effectiveness and safety of spot scanning proton radiation therapy for chordomas and chondrosarcomas of the skull base: first long-term report. Int J Radiat Oncol Biol Phys. 2009;75:1111–8. https://doi.org/10.1016/j.ijrobp.2008.12.055 . (PMID: 10.1016/j.ijrobp.2008.12.05519386442)
Ciernik IF, Niemierko A, Harmon DC, Kobayashi W, Chen Y-L, Yock TI, Ebb DH, Choy E, Raskin KA, Liebsch N, et al. Proton-based radiotherapy for unresectable or incompletely resected osteosarcoma. Cancer. 2011;117:4522–30. https://doi.org/10.1002/cncr.26037 . (PMID: 10.1002/cncr.2603721448934)
Zabel-du Bois A, Nikoghosyan A, Schwahofer A, Huber P, Schlegel W, Debus J, Milker-Zabel S. Intensity modulated radiotherapy in the management of sacral chordoma in primary versus recurrent disease. Radiother Oncol. 2010;97:408–12. https://doi.org/10.1016/j.radonc.2010.10.008 . (PMID: 10.1016/j.radonc.2010.10.00821056488)
Chen Y-L, Liebsch N, Kobayashi W, Goldberg S, Kirsch D, Calkins G, Childs S, Schwab J, Hornicek F, DeLaney T. Definitive high-dose photon/proton radiotherapy for unresected mobile spine and sacral chordomas. Spine (Phila Pa 1976). 2013;38:E930–936. https://doi.org/10.1097/BRS.0b013e318296e7d7 . (PMID: 10.1097/BRS.0b013e318296e7d723609202)
Alahmari M, Temel Y. Skull base chordoma treated with proton therapy: a systematic review. Surg Neurol Int. 2019;10:96. https://doi.org/10.25259/SNI-213-2019 . (PMID: 10.25259/SNI-213-2019315284346744726)
Frezza AM, Botta L, Trama A, Dei Tos AP, Stacchiotti S. Chordoma: update on disease, epidemiology, biology and medical therapies. Curr Opin Oncol. 2019;31:114–20. https://doi.org/10.1097/CCO.0000000000000502 . (PMID: 10.1097/CCO.000000000000050230585858)
Catanzano AA, Kerr DL, Lazarides AL, Dial BL, Lane WO, Blazer DG, Larrier NA, Kirsch DG, Brigman BE, Eward WC. Revisiting the role of radiation therapy in chondrosarcoma: a national cancer database study. Sarcoma. 2019;2019:4878512. https://doi.org/10.1155/2019/4878512 . (PMID: 10.1155/2019/4878512317366536815626)
Zhou J, Yang B, Wang X, Jing Z. Comparison of the effectiveness of radiotherapy with photons and particles for chordoma after surgery: a meta-analysis. World Neurosurg. 2018;117:46–53. https://doi.org/10.1016/j.wneu.2018.05.209 . (PMID: 10.1016/j.wneu.2018.05.20929879512)
Gao Z, Lu T, Song H, Gao Z, Ren F, Ouyang P, Wang Y, Zhu J, Zhou S, He X. Prognostic factors and treatment options for patients with high-grade chondrosarcoma. Med Sci Monit. 2019;25:8952–67. https://doi.org/10.12659/MSM.917959 . (PMID: 10.12659/MSM.917959317653676894367)
Kabolizadeh P, Chen Y-L, Liebsch N, Hornicek FJ, Schwab JH, Choy E, Rosenthal DI, Niemierko A, DeLaney TF. Updated outcome and analysis of tumor response in mobile spine and sacral chordoma treated with definitive high-dose photon/proton radiation therapy. Int J Radiat Oncol Biol Phys. 2017;97:254–62. https://doi.org/10.1016/j.ijrobp.2016.10.006 . (PMID: 10.1016/j.ijrobp.2016.10.00627986348)
Palm RF, Oliver DE, Yang GQ, Abuodeh Y, Naghavi AO, Johnstone PAS. The role of dose escalation and proton therapy in perioperative or definitive treatment of chondrosarcoma and chordoma: an analysis of the national cancer data base. Cancer. 2019;125:642–51. https://doi.org/10.1002/cncr.31958 . (PMID: 10.1002/cncr.3195830644538)
Lu VM, O’Connor KP, Mahajan A, Carlson ML, Van Gompel JJ. Carbon ion radiotherapy for skull base chordomas and chondrosarcomas: a systematic review and meta-analysis of local control, survival, and toxicity outcomes. J Neurooncol. 2020;147:503–13. https://doi.org/10.1007/s11060-020-03464-1 . (PMID: 10.1007/s11060-020-03464-132206977)
Imai R, Kamada T, Araki N, WORKING GROUP FOR BONE and SOFT-TISSUE SARCOMAS. Clinical efficacy of carbon ion radiotherapy for unresectable chondrosarcomas. Anticancer Res. 2017;37:6959–64. https://doi.org/10.21873/anticanres.12162 . (PMID: 10.21873/anticanres.1216229187480)
Wu H, Yu J, Kong D, Xu Y, Zhang Z, Shui J, Li Z, Luo H, Wang K. Population and single-cell transcriptome analyses reveal diverse transcriptional changes associated with radioresistance in esophageal squamous cell carcinoma. Int J Oncol. 2019;55:1237–48. https://doi.org/10.3892/ijo.2019.4897 . (PMID: 10.3892/ijo.2019.4897316381646831193)
Lockney DT, Shub T, Hopkins B, Lockney NA, Moussazadeh N, Lis E, Yamada Y, Schmitt AM, Higginson DS, Laufer I, et al. Spinal stereotactic body radiotherapy following intralesional curettage with separation surgery for initial or salvage chordoma treatment. Neurosurg Focus. 2017;42:E4. https://doi.org/10.3171/2016.9.FOCUS16373 . (PMID: 10.3171/2016.9.FOCUS1637328041314)
Nakamura R, Sugawara J, Yamaguchi S, Kakuhara H, Kikuchi K, Ariga H. Stereotactic body radiotherapy with a single isocentre for multiple pulmonary metastases. BJR Case Rep. 2020;6:20190121. https://doi.org/10.1259/bjrcr.20190121 . (PMID: 10.1259/bjrcr.20190121332995767709054)
Vasudevan HN, Raleigh DR, Johnson J, Garsa AA, Theodosopoulos PV, Aghi MK, Ames C, McDermott MW, Barani IJ, Braunstein SE. Management of chordoma and chondrosarcoma with fractionated stereotactic radiotherapy. Front Surg. 2017;4:35. https://doi.org/10.3389/fsurg.2017.00035 . (PMID: 10.3389/fsurg.2017.00035286910105481320)
DuBois SG, Krailo MD, Gebhardt MC, Donaldson SS, Marcus KJ, Dormans J, Shamberger RC, Sailer S, Nicholas RW, Healey JH, et al. Comparative evaluation of local control strategies in localized ewing sarcoma of bone: a report from the children’s oncology group. Cancer. 2015;121:467–75. https://doi.org/10.1002/cncr.29065 . (PMID: 10.1002/cncr.2906525251206)
Haeusler J, Ranft A, Boelling T, Gosheger G, Braun-Munzinger G, Vieth V, Burdach S, van den Berg H, Juergens H, Dirksen U. The value of local treatment in patients with Primary, Disseminated, Multifocal Ewing Sarcoma (PDMES). Cancer. 2010;116:443–50. https://doi.org/10.1002/cncr.24740 . (PMID: 10.1002/cncr.2474019924786)
DeLaney TF, Liebsch NJ, Pedlow FX, Adams J, Weyman EA, Yeap BY, Depauw N, Nielsen GP, Harmon DC, Yoon SS, et al. Long-term results of phase II study of high dose photon/proton radiotherapy in the management of spine chordomas, chondrosarcomas, and other sarcomas. J Surg Oncol. 2014;110:115–22. https://doi.org/10.1002/jso.23617 . (PMID: 10.1002/jso.2361724752878)
Brown LC, Lester RA, Grams MP, Haddock MG, Olivier KR, Arndt CAS, Rose PS, Laack NN. Stereotactic body radiotherapy for metastatic and recurrent Ewing sarcoma and osteosarcoma. Sarcoma. 2014;2014:418270. https://doi.org/10.1155/2014/418270 . (PMID: 10.1155/2014/418270255485384274855)
Mohamad O, Imai R, Kamada T, Nitta Y, Araki N. Carbon ion radiotherapy for inoperable pediatric osteosarcoma. Oncotarget. 2018;9:22976–85. https://doi.org/10.18632/oncotarget.25165 . (PMID: 10.18632/oncotarget.25165297961665955418)
Seidensaal K, Mattke M, Haufe S, Rathke H, Haberkorn U, Bougatf N, Kudak A, Blattmann C, Oertel S, Kirchner M, et al. The Role of Combined Ion-Beam Radiotherapy (CIBRT) with Protons and Carbon Ions in a Multimodal Treatment Strategy of Inoperable Osteosarcoma. Radiother Oncol. 2021;159:8–16. https://doi.org/10.1016/j.radonc.2021.01.029 . (PMID: 10.1016/j.radonc.2021.01.02933549644)
DeLaney TF, Park L, Goldberg SI, Hug EB, Liebsch NJ, Munzenrider JE, Suit HD. Radiotherapy for local control of osteosarcoma. Int J Radiat Oncol Biol Phys. 2005;61:492–8. https://doi.org/10.1016/j.ijrobp.2004.05.051 . (PMID: 10.1016/j.ijrobp.2004.05.05115667972)
Balosso J, Febvey-Combes O, Iung A, Lozano H, Alloh AS, Cornu C, Hervé M, Akkal Z, Lièvre M, Plattner V, et al. A randomized controlled phase III study comparing hadrontherapy with carbon ions versus conventional radiotherapy - including photon and proton therapy - for the treatment of radioresistant tumors: the ETOILE trial. BMC Cancer. 2022;22:575. https://doi.org/10.1186/s12885-022-09564-7 . (PMID: 10.1186/s12885-022-09564-7356067399128242)
Emami B, Lyman J, Brown A, Coia L, Goitein M, Munzenrider JE, Shank B, Solin LJ, Wesson M. Tolerance of normal tissue to therapeutic irradiation. Int J Radiat Oncol Biol Phys. 1991;21:109–22. https://doi.org/10.1016/0360-3016(91)90171-y . (PMID: 10.1016/0360-3016(91)90171-y2032882)
Maier P, Wenz F, Herskind C. Radioprotection of normal tissue cells. Strahlenther Onkol. 2014;190:745–52. https://doi.org/10.1007/s00066-014-0637-x . (PMID: 10.1007/s00066-014-0637-x24638269)
Vitti ET, Parsons JL. The radiobiological effects of proton beam therapy: Impact on DNA Damage and Repair. Cancers (Basel). 2019;11:946. https://doi.org/10.3390/cancers11070946 . (PMID: 10.3390/cancers1107094631284432)
Kim EH, Kim M-S, Lee K-H, Koh J-S, Jung W-G, Kong C-B. Zoledronic acid is an effective radiosensitizer in the treatment of osteosarcoma. Oncotarget. 2016;7:70869–80. https://doi.org/10.18632/oncotarget.12281 . (PMID: 10.18632/oncotarget.12281277659195342595)
Sawai Y, Murata H, Horii M, Koto K, Matsui T, Horie N, Tsuji Y, Ashihara E, Maekawa T, Kubo T, et al. Effectiveness of sulforaphane as a radiosensitizer for murine osteosarcoma cells. Oncol Rep. 2013;29:941–5. https://doi.org/10.3892/or.2012.2195 . (PMID: 10.3892/or.2012.219523254561)
Zhang X-Y, Sun K, Zhu Q, Song T, Liu Y. Ginseng polysaccharide serves as a potential radiosensitizer through inducing apoptosis and autophagy in the treatment of osteosarcoma. Kaohsiung J Med Sci. 2017;33:535–42. https://doi.org/10.1016/j.kjms.2017.07.001 . (PMID: 10.1016/j.kjms.2017.07.00129050670)
Bogado RFE, Pezuk JA, de Oliveira HF, Tone LG, Brassesco MS. BI 6727 and GSK461364 suppress growth and radiosensitize osteosarcoma cells, but show limited cytotoxic effects when combined with conventional treatments. Anticancer Drugs. 2015;26:56–63. https://doi.org/10.1097/CAD.0000000000000157 . (PMID: 10.1097/CAD.000000000000015725089571)
Mamo T, Mladek AC, Shogren KL, Gustafson C, Gupta SK, Riester SM, Maran A, Galindo M, van Wijnen AJ, Sarkaria JN, et al. Inhibiting DNA-PKCS radiosensitizes human osteosarcoma cells. Biochem Biophys Res Commun. 2017;486:307–13. https://doi.org/10.1016/j.bbrc.2017.03.033 . (PMID: 10.1016/j.bbrc.2017.03.033283005555489116)
Blattmann C, Thiemann M, Stenzinger A, Christmann A, Roth E, Ehemann V, Debus J, Kulozik AE, Weichert W, Huber PE, et al. Radiosensitization by histone deacetylase inhibition in an osteosarcoma mouse model. Strahlenther Onkol. 2013;189:957–66. https://doi.org/10.1007/s00066-013-0372-8 . (PMID: 10.1007/s00066-013-0372-823801068)
Ogawa Y, Takahashi T, Kobayashi T, Kariya S, Nishioka A, Ohnishi T, Saibara T, Hamasato S, Tani T, Seguchi H, et al. Apoptotic-resistance of the human osteosarcoma cell line HS-Os-1 to irradiation is converted to apoptotic-susceptibility by hydrogen peroxide: a potent role of hydrogen peroxide as a new radiosensitizer. Int J Mol Med. 2003;12:845–50. (PMID: 14612955)
Liu G, Wang H, Zhang F, Tian Y, Tian Z, Cai Z, Lim D, Feng Z. The effect of VPA on increasing radiosensitivity in osteosarcoma cells and primary-culture cells from chemical carcinogen-induced breast cancer in rats. Int J Mol Sci. 2017;18:E1027. https://doi.org/10.3390/ijms18051027 . (PMID: 10.3390/ijms18051027)
Johnson AM, Bennett PV, Sanidad KZ, Hoang A, Jardine JH, Keszenman DJ, Wilson PF. Evaluation of histone deacetylase inhibitors as radiosensitizers for proton and light ion radiotherapy. Front Oncol. 2021;11:735940. https://doi.org/10.3389/fonc.2021.735940 . (PMID: 10.3389/fonc.2021.735940345137128426582)
Blattmann C, Oertel S, Ehemann V, Thiemann M, Huber PE, Bischof M, Witt O, Deubzer HE, Kulozik AE, Debus J, et al. Enhancement of radiation response in osteosarcoma and rhabdomyosarcoma cell lines by histone deacetylase inhibition. Int J Radiat Oncol Biol Phys. 2010;78:237–45. https://doi.org/10.1016/j.ijrobp.2010.03.010 . (PMID: 10.1016/j.ijrobp.2010.03.01020646843)
Li Y, Geng P, Jiang W, Wang Y, Yao J, Lin X, Liu J, Huang L, Su B, Chen H. Enhancement of radiosensitivity by 5-Aza-CdR through activation of G2/M checkpoint response and apoptosis in osteosarcoma cells. Tumour Biol. 2014;35:4831–9. https://doi.org/10.1007/s13277-014-1634-5 . (PMID: 10.1007/s13277-014-1634-524474250)
Berberine Enhances the Radiosensitivity of Osteosarcoma by Targeting Rad51 and Epithelial-Mesenchymal Transition - PubMed Available online: https://pubmed.ncbi.nlm.nih.gov/32474504/ (Accessed on 11 Oct 2021).
Brassesco MS, Pezuk JA, de Oliveira JC, Valera ET, de Oliveira HF, Scrideli CA, Umezawa K, Tone LG. Activator protein-1 inhibition by 3-[(Dodecylthiocarbonyl)Methyl]-glutamaride impairs invasion and radiosensitizes osteosarcoma cells in vitro. Cancer Biother Radiopharm. 2013;28:351–8. https://doi.org/10.1089/cbr.2012.1305 . (PMID: 10.1089/cbr.2012.130523350896)
Lund-Andersen C, Patzke S, Nähse-Kumpf V, Syljuåsen RG. PLK1-inhibition can cause radiosensitization or radioresistance dependent on the treatment schedule. Radiother Oncol. 2014;110:355–61. https://doi.org/10.1016/j.radonc.2013.12.014 . (PMID: 10.1016/j.radonc.2013.12.01424502970)
Kubota N, Ozawa F, Okada S, Inada T, Komatsu K, Okayasu R. The phosphatidylinositol 3-kinase inhibitor Wortmannin sensitizes quiescent but not proliferating MG-63 human osteosarcoma cells to radiation. Cancer Lett. 1998;133:161–7. https://doi.org/10.1016/s0304-3835(98)00221-3 . (PMID: 10.1016/s0304-3835(98)00221-310072165)
Lin MY, Damron TA, Oest ME, Horton JA. Mithramycin a radiosensitizes EWS:Fli1+ Ewing sarcoma cells by inhibiting double strand break repair. Int J Radiat Oncol Biol Phys. 2021;109:1454–71. https://doi.org/10.1016/j.ijrobp.2020.12.010 . (PMID: 10.1016/j.ijrobp.2020.12.01033373655)
Lee H-J, Yoon C, Schmidt B, Park DJ, Zhang AY, Erkizan HV, Toretsky JA, Kirsch DG, Yoon SS. Combining PARP-1 inhibition and radiation in Ewing sarcoma results in lethal DNA damage. Mol Cancer Ther. 2013;12:2591–600. https://doi.org/10.1158/1535-7163.MCT-13-0338 . (PMID: 10.1158/1535-7163.MCT-13-033823966622)
Veeraraghavan J, Natarajan M, Herman TS, Aravindan N. Curcumin-Altered P53-response genes regulate radiosensitivity in P53-Mutant Ewing’s sarcoma cells. Anticancer Res. 2010;30:4007–15. (PMID: 21036715)
Attawia MA, Borden MD, Herbert KM, Katti DS, Asrari F, Uhrich KE, Laurencin CT. Regional drug delivery with radiation for the treatment of Ewing’s sarcoma. In vitro development of a Taxol release system. J Control Release. 2001;71:193–202. https://doi.org/10.1016/s0168-3659(01)00217-6 . (PMID: 10.1016/s0168-3659(01)00217-611274751)
Césaire M, Ghosh U, Austry J-B, Muller E, Cammarata FP, Guillamin M, Caruso M, Castéra L, Petringa G, Cirrone GAP, et al. Sensitization of chondrosarcoma cells with PARP inhibitor and high-LET radiation. J Bone Oncol. 2019;17:100246. https://doi.org/10.1016/j.jbo.2019.100246 . (PMID: 10.1016/j.jbo.2019.100246313125956609837)
Wang K, Michelakos T, Wang B, Shang Z, DeLeo AB, Duan Z, Hornicek FJ, Schwab JH, Wang X. Targeting cancer stem cells by disulfiram and copper sensitizes radioresistant chondrosarcoma to radiation. Cancer Lett. 2021;505:37–48. https://doi.org/10.1016/j.canlet.2021.02.002 . (PMID: 10.1016/j.canlet.2021.02.002335822128969896)
Saeed A, Singh P, Malyapa RS, Mahmood J, Vujaskovic Z. Hyperthermia induces radiosensitization and leads to reduced brachyury levels in chordoma cells. Int J Radiat Oncol Biol Phys. 2020;108:e518. https://doi.org/10.1016/j.ijrobp.2020.07.1626 . (PMID: 10.1016/j.ijrobp.2020.07.1626)
Huq S, Kedda J, Zhao T, Serra R, Ding A, Morales M, Ehresman J, Brem H, Gallia GL, Sciubba DM et al. Repositioning the antiviral drug ribavirin as a radiosensitizing agent in chordoma. Neurosurgery. 2020;67, https://doi.org/10.1093/neuros/nyaa447_887 .
Hao S, Song H, Zhang W, Seldomridge A, Jung J, Giles AJ, Hutchinson M-K, Cao X, Colwell N, Lita A, et al. Protein phosphatase 2A inhibition enhances radiation sensitivity and reduces tumor growth in chordoma. Neuro Oncol. 2018;20:799–809. https://doi.org/10.1093/neuonc/nox241 . (PMID: 10.1093/neuonc/nox24129294092)
Locquet M-A, Dechaume A-L, Berchard P, Abbes L, Pissaloux D, Tirode F, Ramos I, Bedoucha J, Valantin J, Karanian M, et al. Aldehyde dehydrogenase, a therapeutic target in chordoma: analysis in 3D cellular models. Cells. 2021;10:399. https://doi.org/10.3390/cells10020399 . (PMID: 10.3390/cells10020399336720327919493)
Shiloh Y. ATM and related protein kinases: safeguarding genome integrity. Nat Rev Cancer. 2003;3:155–68. https://doi.org/10.1038/nrc1011 . (PMID: 10.1038/nrc101112612651)
Abraham RT. Cell cycle checkpoint signaling through the ATM and ATR Kinases. Genes Dev. 2001;15:2177–96. https://doi.org/10.1101/gad.914401 . (PMID: 10.1101/gad.91440111544175)
Ernst A, Anders H, Kapfhammer H, Orth M, Hennel R, Seidl K, Winssinger N, Belka C, Unkel S, Lauber K. HSP90 inhibition as a means of radiosensitizing resistant, aggressive soft tissue sarcomas. Cancer Lett. 2015;365:211–22. https://doi.org/10.1016/j.canlet.2015.05.024 . (PMID: 10.1016/j.canlet.2015.05.02426044951)
Zhang C, Wang B, Li L, Li Y, Li P, Lv G. Radioresistance of chordoma cells is associated with the ATM/ATR pathway, in which RAD51 serves as an important downstream effector. Exp Ther Med. 2017;14:2171–9. https://doi.org/10.3892/etm.2017.4736 . (PMID: 10.3892/etm.2017.4736289621385609200)
Gröschel S, Hübschmann D, Raimondi F, Horak P, Warsow G, Fröhlich M, Klink B, Gieldon L, Hutter B, Kleinheinz K, et al. Defective homologous recombination DNA repair as therapeutic target in advanced chordoma. Nat Commun. 2019;10:1–9. https://doi.org/10.1038/s41467-019-09633-9 . (PMID: 10.1038/s41467-019-09633-9)
Thoenen E, Curl A, Iwakuma T. TP53 in bone and soft tissue sarcomas. Pharmacol Ther. 2019;202:149–64. https://doi.org/10.1016/j.pharmthera.2019.06.010 . (PMID: 10.1016/j.pharmthera.2019.06.010312767066746598)
Casey DL, Pitter KL, Wexler L, Slotkin E, Gupta GP, Wolden SL. P53 pathway mutations increase radioresistance in rhabdomyosarcoma and Ewing sarcoma. Int J Radiat Oncol Biol Phys. 2020;108:S179. https://doi.org/10.1016/j.ijrobp.2020.07.963 . (PMID: 10.1016/j.ijrobp.2020.07.963)
Casey DL, Pitter KL, Wexler LH, Slotkin EK, Gupta GP, Wolden SL. TP53 mutations increase radioresistance in rhabdomyosarcoma and Ewing sarcoma. Br J Cancer. 2021;125:576–81. https://doi.org/10.1038/s41416-021-01438-2 . (PMID: 10.1038/s41416-021-01438-2340170878368014)
Tarpey PS, Behjati S, Young MD, Martincorena I, Alexandrov LB, Farndon SJ, Guzzo C, Hardy C, Latimer C, Butler AP, et al. The driver landscape of sporadic chordoma. Nat Commun. 2017;8:890. https://doi.org/10.1038/s41467-017-01026-0 . (PMID: 10.1038/s41467-017-01026-0290261145638846)
Matsuno A, Sasaki T, Nagashima T, Matsuura R, Tanaka H, Hirakawa M, Murakami M, Kirino T. Immunohistochemical examination of proliferative potentials and the expression of cell cycle-related proteins of intracranial chordomas. Hum Pathol. 1997;28:714–9. https://doi.org/10.1016/s0046-8177(97)90181-7 . (PMID: 10.1016/s0046-8177(97)90181-79191006)
Sakai K, Hongo K, Tanaka Y, Nakayama J. Analysis of immunohistochemical expression of P53 and the proliferation marker Ki-67 antigen in skull base chordomas: relationships between their expression and prognosis. Brain Tumor Pathol. 2007;24:57–62. https://doi.org/10.1007/s10014-007-0222-4 . (PMID: 10.1007/s10014-007-0222-418095132)
Weinberg WC, Denning MF. P21Waf1 control of epithelial cell cycle and cell fate. Crit Rev Oral Biol Med. 2002;13:453–64. https://doi.org/10.1177/154411130201300603 . (PMID: 10.1177/15441113020130060312499239)
Jackson SP, Bartek J. The DNA-damage response in human biology and disease. Nature. 2009;461:1071–8. https://doi.org/10.1038/nature08467 . (PMID: 10.1038/nature08467198472582906700)
Lerman DM, Monument MJ, McIlvaine E, Liu X, Huang D, Monovich L, Beeler N, Gorlick RG, Marina NM, Womer RB, et al. Tumoral TP53 and/or CDKN2A alterations are not reliable prognostic biomarkers in patients with localized Ewing sarcoma: a report from the children’s oncology group. Pediatr Blood Cancer. 2015;62:759–65. https://doi.org/10.1002/pbc.25340 . (PMID: 10.1002/pbc.2534025464386)
Mohseny AB, Szuhai K, Romeo S, Buddingh EP, Briaire-de Bruijn I, de Jong D, van Pel M, Cleton-Jansen AM, Hogendoorn PCW. Osteosarcoma originates from mesenchymal stem cells in consequence of aneuploidization and genomic loss of Cdkn2. J Pathol. 2009;219:294–305. https://doi.org/10.1002/path.2603 . (PMID: 10.1002/path.260319718709)
de Jong Y, Ingola M, Briaire-de Bruijn IH, Kruisselbrink AB, Venneker S, Palubeckaite I, Heijs BP, Cleton-Jansen AM, Haas RL, Bovée JV. Radiotherapy resistance in chondrosarcoma cells; a possible correlation with alterations in cell cycle related genes. Clin Sarcoma Res. 2019;9:9. https://doi.org/10.1186/s13569-019-0119-0 . (PMID: 10.1186/s13569-019-0119-0311609656540537)
Ran Q, Jin F, Xiang Y, Xiang L, Wang Q, Li F, Chen L, Zhang Y, Wu C, Zhou L, et al. CRIF1 as a potential target to improve the radiosensitivity of osteosarcoma. Proc Natl Acad Sci U S A. 2019;116:20511–6. https://doi.org/10.1073/pnas.1906578116 . (PMID: 10.1073/pnas.1906578116315484206789918)
Caretti V, Hiddingh L, Lagerweij T, Schellen P, Koken PW, Hulleman E, van Vuurden DG, Vandertop WP, Kaspers GJL, Noske DP, et al. WEE1 Kinase inhibition enhances the radiation response of diffuse intrinsic pontine gliomas. Mol Cancer Ther. 2013;12:141–50. https://doi.org/10.1158/1535-7163.MCT-12-0735 . (PMID: 10.1158/1535-7163.MCT-12-073523270927)
Chang HHY, Pannunzio NR, Adachi N, Lieber MR. Non-homologous DNA end joining and alternative pathways to double-strand break repair. Nat Rev Mol Cell Biol. 2017;18:495–506. https://doi.org/10.1038/nrm.2017.48 . (PMID: 10.1038/nrm.2017.48285123517062608)
Branzei D, Foiani M. Regulation of DNA repair throughout the cell cycle. Nat Rev Mol Cell Biol. 2008;9:297–308. https://doi.org/10.1038/nrm2351 . (PMID: 10.1038/nrm235118285803)
Du L, Bai J, Liu Q, Wang Y, Zhao P, Chen F, Wang H, Fan F. Correlation of RAD51 and radiosensitization of methotrexate. Chin J Radiol Med Protect. 2012:44–6.
Zhang H-T, Yang J, Liang G-H, Gao X-J, Sang Y, Gui T, Liang Z-J, Tam M-S, Zha Z-G. Andrographolide induces cell cycle arrest and apoptosis of chondrosarcoma by targeting TCF-1/SOX9 axis. J Cell Biochem. 2017. https://doi.org/10.1002/jcb.26122 . (PMID: 10.1002/jcb.26122292157585747991)
Rello-Varona S, Herrero-Martín D, Lagares-Tena L, López-Alemany R, Mulet-Margalef N, Huertas-Martínez J, Garcia-Monclús S, García del Muro X, Muñoz-Pinedo C, Tirado OM. The importance of being dead: cell death mechanisms assessment in anti-sarcoma therapy. Front Oncol. 2015;5:82. https://doi.org/10.3389/fonc.2015.00082 . (PMID: 10.3389/fonc.2015.00082259050414387920)
Vousden KH. P53: death star. Cell. 2000;103:691–4. https://doi.org/10.1016/s0092-8674(00)00171-9 . (PMID: 10.1016/s0092-8674(00)00171-911114324)
Harms K, Nozell S, Chen X. The common and distinct target genes of the P53 family transcription factors. Cell Mol Life Sci. 2004;61:822–42. https://doi.org/10.1007/s00018-003-3304-4 . (PMID: 10.1007/s00018-003-3304-415095006)
Popadiuk S, Renke J, Woźniak M, Korzon M. Does chemotherapy and radiotherapy influence the level of oxidative stress in children with malignant bone tumours? Med Wieku Rozwoj. 2006;10:855–9. (PMID: 17317917)
Kolesnick R. The therapeutic potential of modulating the ceramide/sphingomyelin pathway. J Clin Invest. 2002;110:3–8. https://doi.org/10.1172/JCI16127 . (PMID: 10.1172/JCI1612712093880151041)
Castedo M, Perfettini J-L, Roumier T, Andreau K, Medema R, Kroemer G. Cell death by mitotic catastrophe: a molecular definition. Oncogene. 2004;23:2825–37. https://doi.org/10.1038/sj.onc.1207528 . (PMID: 10.1038/sj.onc.120752815077146)
Kim DW, Seo SW, Cho SK, Chang SS, Lee HW, Lee SE, Block JA, Hei TK, Lee FY. Targeting of cell survival genes using Small Interfering RNAs (SiRNAs) enhances radiosensitivity of grade II chondrosarcoma cells. J Orthop Res. 2007;25:820–8. https://doi.org/10.1002/jor.20377 . (PMID: 10.1002/jor.2037717343283)
Greve B, Sheikh-Mounessi F, Kemper B, Ernst I, Götte M, Eich HT. Survivin, a target to modulate the radiosensitivity of Ewing’s sarcoma. Strahlenther Onkol. 2012;188:1038–47. https://doi.org/10.1007/s00066-012-0223-z . (PMID: 10.1007/s00066-012-0223-z23053158)
De Jong Y, Van Oosterwijk JG, Kruisselbrink AB, Briaire-de Bruijn IH, Agrogiannis G, Baranski Z, Cleven AH, Cleton-Jansen AM, Van De Water B, Danen EH, et al. Targeting Survivin as a Potential New Treatment for Chondrosarcoma of Bone. Oncogenesis 2016;5:e222 https://doi.org/10.1038/oncsis.2016.33 .
Brown JM, Wilson WR. Exploiting tumour hypoxia in cancer treatment. Nat Rev Cancer. 2004;4:437–47. https://doi.org/10.1038/nrc1367 . (PMID: 10.1038/nrc136715170446)
Harrison DJ, Parisi MT, Shulkin BL. The role of 18F-FDG-PET/CT in pediatric sarcoma. Semin Nucl Med. 2017;47:229–41. https://doi.org/10.1053/j.semnuclmed.2016.12.004 . (PMID: 10.1053/j.semnuclmed.2016.12.00428417853)
Cheney MD, Chen Y-L, Lim R, Winrich BK, Grosu AL, Trofimov AV, Depauw N, Shih HA, Schwab JH, Hornicek FJ, et al. 18F-FMISO PET/CT visualization of tumor hypoxia in patients with chordoma of the mobile and sacrococcygeal spine. Int J Radiat Oncol Biol Phys. 2014;90:1030–6. https://doi.org/10.1016/j.ijrobp.2014.08.016 . (PMID: 10.1016/j.ijrobp.2014.08.016255393674280072)
Brenner W, Conrad EU, Eary JF. FDG PET imaging for grading and prediction of outcome in chondrosarcoma patients. Eur J Nucl Med Mol Imaging. 2004;31:189–95. https://doi.org/10.1007/s00259-003-1353-4 . (PMID: 10.1007/s00259-003-1353-415129700)
Rajendran JG, Wilson DC, Conrad EU, Peterson LM, Bruckner JD, Rasey JS, Chin LK, Hofstrand PD, Grierson JR, Eary JF, et al. [(18)F]FMISO and [(18)F]FDG PET imaging in soft tissue sarcomas: correlation of hypoxia, metabolism and VEGF expression. Eur J Nucl Med Mol Imaging. 2003;30:695–704. https://doi.org/10.1007/s00259-002-1096-7 . (PMID: 10.1007/s00259-002-1096-712632200)
Brizel DM, Scully SP, Harrelson JM, Layfield LJ, Bean JM, Prosnitz LR, Dewhirst MW. Tumor oxygenation predicts for the likelihood of distant metastases in human soft tissue sarcoma. Cancer Res. 1996;56:941–3. (PMID: 8640781)
Feng H, Wang J, Chen W, Shan B, Guo Y, Xu J, Wang L, Guo P, Zhang Y. Hypoxia-Induced autophagy as an additional mechanism in human osteosarcoma radioresistance. J Bone Oncol. 2016;5:67–73. https://doi.org/10.1016/j.jbo.2016.03.001 . (PMID: 10.1016/j.jbo.2016.03.001273357744908188)
Dai N, Qing Y, Cun Y, Zhong Z, Li C, Zhang S, Shan J, Yang X, Dai X, Cheng Y, et al. MiR-513a-5p regulates radiosensitivity of osteosarcoma by targeting human apurinic/apyrimidinic endonuclease. Oncotarget. 2018;9:25414–26. https://doi.org/10.18632/oncotarget.11003 . (PMID: 10.18632/oncotarget.1100329875998)
Yang Z, Wa Q-D, Lu C, Pan W, Lu Z-Μ, Ao J. MiR-328-3p enhances the radiosensitivity of osteosarcoma and regulates apoptosis and cell viability via H2AX. Oncol Rep. 2018;39:545–53. https://doi.org/10.3892/or.2017.6112 . (PMID: 10.3892/or.2017.611229207178)
Turek M, Padilla M, Argyle DJ. Evaluation of the gene for inducible nitric oxide synthase as a radiosensitizer under hypoxic and oxic conditions. Vet Comp Oncol. 2007;5:250–5. https://doi.org/10.1111/j.1476-5829.2007.00138.x . (PMID: 10.1111/j.1476-5829.2007.00138.x19754783)
Shen L, Zhao K, Li H, Ning B, Wang W, Liu R, Zhang Y, Zhang A. Downregulation of UBE2T can enhance the radiosensitivity of osteosarcoma in vitro and in vivo. Epigenomics. 2019;11:1283–305. https://doi.org/10.2217/epi-2019-0125 . (PMID: 10.2217/epi-2019-012531355678)
Liu Y, Zhu S-T, Wang X, Deng J, Li W-H, Zhang P, Liu B-S. MiR-200c regulates tumor growth and chemosensitivity to cisplatin in osteosarcoma by targeting AKT2. Sci Rep. 2017;7:13598. https://doi.org/10.1038/s41598-017-14088-3 . (PMID: 10.1038/s41598-017-14088-3290515855648776)
Wang Y-H, Wang Z-X, Qiu Y, Xiong J, Chen Y-X, Miao D-S, De W. Lentivirus-mediated RNAi knockdown of insulin-like growth factor-1 receptor inhibits growth, reduces invasion, and enhances radiosensitivity in human osteosarcoma cells. Mol Cell Biochem. 2009;327:257–66. https://doi.org/10.1007/s11010-009-0064-y . (PMID: 10.1007/s11010-009-0064-y19229591)
Zhang Z, Liu X, Chen D, Yu J. Radiotherapy combined with immunotherapy: the dawn of cancer treatment. Signal Transduct Target Ther. 2022;7:258. https://doi.org/10.1038/s41392-022-01102-y . (PMID: 10.1038/s41392-022-01102-y359061999338328)
Heymann M-F, Schiavone K, Heymann D. Bone sarcomas in the immunotherapy Era. Br J Pharmacol. 2021;178:1955–72. https://doi.org/10.1111/bph.14999 . (PMID: 10.1111/bph.1499931975481)
Siozopoulou V, Domen A, Zwaenepoel K, Van Beeck A, Smits E, Pauwels P, Marcq E. Immune checkpoint inhibitory therapy in sarcomas: is there light at the end of the tunnel? Cancers (Basel). 2021;13:360. https://doi.org/10.3390/cancers13020360 . (PMID: 10.3390/cancers1302036033478080)
Weber DC, Malyapa R, Albertini F, Bolsi A, Kliebsch U, Walser M, Pica A, Combescure C, Lomax AJ, Schneider R. Long term outcomes of patients with skull-base low-grade chondrosarcoma and chordoma patients treated with pencil beam scanning proton therapy. Radiother Oncol. 2016;120:169–74. https://doi.org/10.1016/j.radonc.2016.05.011 . (PMID: 10.1016/j.radonc.2016.05.01127247057)
Snider JW, Schneider RA, Poelma-Tap D, Stieb S, Murray FR, Placidi L, Albertini F, Lomax A, Bolsi A, Kliebsch U, et al. Long-term outcomes and prognostic factors after pencil-beam scanning proton radiation therapy for spinal chordomas: a large, single-institution cohort. Int J Radiat Oncol Biol Phys. 2018;101:226–33. https://doi.org/10.1016/j.ijrobp.2018.01.060 . (PMID: 10.1016/j.ijrobp.2018.01.06029619966)
Uezono H, Indelicato DJ, Rotondo RL, Mailhot Vega RB, Bradfield SM, Morris CG, Bradley JA. Treatment outcomes after proton therapy for ewing sarcoma of the pelvis. Int J Radiat Oncol Biol Phys. 2020;107:974–81. https://doi.org/10.1016/j.ijrobp.2020.04.043 . (PMID: 10.1016/j.ijrobp.2020.04.04332437922)
Chargari C, Levy A, Paoletti X, Soria J-C, Massard C, Weichselbaum RR, Deutsch E. Methodological development of combination drug and radiotherapy in basic and clinical research. Clin Cancer Res. 2020;26:4723–36. https://doi.org/10.1158/1078-0432.CCR-19-4155 . (PMID: 10.1158/1078-0432.CCR-19-415532409306)
Herrera FG, Ronet C, Ochoa de Olza M, Barras D, Crespo I, Andreatta M, Corria-Osorio J, Spill A, Benedetti F, Genolet R, et al. Low-dose radiotherapy reverses tumor immune desertification and resistance to immunotherapy. Cancer Discov. 2022;12:108–33. https://doi.org/10.1158/2159-8290.CD-21-0003 . (PMID: 10.1158/2159-8290.CD-21-000334479871)
فهرسة مساهمة: Keywords: Advanced radiotherapy technics; Bone sarcoma; Radioresistance; Radiosensitization
تواريخ الأحداث: Date Created: 20230810 Date Completed: 20231120 Latest Revision: 20231120
رمز التحديث: 20231120
مُعرف محوري في PubMed: PMC10416357
DOI: 10.1186/s12885-023-11232-3
PMID: 37563551
قاعدة البيانات: MEDLINE
الوصف
تدمد:1471-2407
DOI:10.1186/s12885-023-11232-3