دورية أكاديمية

Comparative analysis of molecular and morphological diversity in two diploid Paspalum species (Poaceae) with contrasting mating systems.

التفاصيل البيبلوغرافية
العنوان: Comparative analysis of molecular and morphological diversity in two diploid Paspalum species (Poaceae) with contrasting mating systems.
المؤلفون: Reutemann AV; Instituto de Botánica del Nordeste (IBONE-CONICET-UNNE), Facultad de Ciencias Agrarias, Universidad Nacional del Nordeste (FCA-UNNE), 3400, Corrientes, Argentina., Honfi AI; Programa de Estudios Florísticos y Genética Vegetal, Instituto de Biología Subtropical (PEFyGV, IBS-UNaM-CONICET), 3300, Posadas, Argentina., Karunarathne P; Department of Systematics, Biodiversity and Evolution of Plants, Albrecht-Von-Haller Institute for Plant Sciences, University of Goettingen, 37073, Goettingen, Germany.; Institute for Population Genetics, Heinrich Heine University, 40225, Düsseldorf, Germany., Eckers F; Programa de Estudios Florísticos y Genética Vegetal, Instituto de Biología Subtropical (PEFyGV, IBS-UNaM-CONICET), 3300, Posadas, Argentina., Hojsgaard DH; Taxonomy and Evolutionary Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466, Gatersleben, Germany., Martínez EJ; Instituto de Botánica del Nordeste (IBONE-CONICET-UNNE), Facultad de Ciencias Agrarias, Universidad Nacional del Nordeste (FCA-UNNE), 3400, Corrientes, Argentina. eric@agr.unne.edu.ar.
المصدر: Plant reproduction [Plant Reprod] 2024 Mar; Vol. 37 (1), pp. 15-32. Date of Electronic Publication: 2023 Aug 11.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Springer Country of Publication: Germany NLM ID: 101602701 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 2194-7961 (Electronic) Linking ISSN: 21947953 NLM ISO Abbreviation: Plant Reprod Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Berlin : Springer, 2013-
مواضيع طبية MeSH: Paspalum*/genetics, Diploidy ; Reproduction ; Pollen ; Plants
مستخلص: Key Message: Interspecific comparison of two Paspalum species has demonstrated that mating systems (selfing and outcrossing) contribute to variation (genetically and morphologically) within species through similar but mutually exclusive processes. Mating systems play a key role in the genetic dynamics of populations. Studies show that populations of selfing plants have less genetic diversity than outcrossing plants. Yet, many such studies have ignored morphological diversity. Here, we compared the morphological and molecular diversity patterns in populations of two phylogenetically-related sexual diploids that differ in their mating system: self-sterile Paspalum indecorum and self-fertile P. pumilum. We assessed the morphological variation using 16 morpho-phenological characters and the molecular diversity using three combinations of AFLPs. We compared the morphological and molecular diversity within and among populations in each mating system. Contrary to expectations, selfers showed higher morphological variation within populations, mainly in vegetative and phenological traits, compared to outcrossers. The high morphological variation within populations of selfers led to a low differentiation among populations. At molecular level, selfing populations showed lower levels of genotypic and genetic diversity than outcrossing populations. As expected, selfers showed higher population structure than outcrossers (Phi ST  = 0.301 and Phi ST  = 0.108, respectively). Increased homozygous combinations for the same trait/locus enhance morphological variation and reduce molecular variation within populations in selfing P. pumilum. Thus, selfing outcomes are opposite when comparing morphological and molecular variation in P. pumilum. Meanwhile, pollen flow in obligate outcrossing populations of P. indecorum increases within-population molecular variation, but tends to homogenize phenotypes within-population. Pollen flow in obligate outcrossers tends to merge geographically closer populations; but isolation by distance can lead to a weak differentiation among distant populations of P. indecorum.
(© 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)
References: Allard RW, Jain SK, Workman PL (1968) The genetics of inbreeding populations. Adv Genet 14:55–131. https://doi.org/10.1016/S0065-2660(08)60425-3. (PMID: 10.1016/S0065-2660(08)60425-3)
Awadalla P, Ritland K (1997) Microsatellite variation and evolution in the Mimulus guttatus species complex with contrasting mating systems. Mol Biol Evol 14:1023–1034. https://doi.org/10.1093/oxfordjournals.molbev.a025708. (PMID: 10.1093/oxfordjournals.molbev.a0257089335142)
Baker HG (1955) Self-compatibility and establishment after “long-distance” dispersal. Evolution 9:347–348. https://doi.org/10.2307/2405656. (PMID: 10.2307/2405656)
Baker HG (1967) Support for Baker’s law-as a rule. Evolution 21:853–856. https://doi.org/10.2307/2406780. (PMID: 10.2307/240678028563079)
Barrett SC, Harder LD (2017) The ecology of mating and its evolutionary consequences in seed plants. Ann Rev Ecol Evol Syst 48:135–157. https://doi.org/10.1146/annurev-ecolsys-110316-023021. (PMID: 10.1146/annurev-ecolsys-110316-023021)
Baudry E, Kerdelhue C, Innan H, Stephan W (2001) Species and recombination effects on DNA variability in the tomato genus. Genetics 158:1725–1735. https://doi.org/10.1093/genetics/158.4.1725. (PMID: 10.1093/genetics/158.4.1725115144581461759)
Beaumont MA, Balding DJ (2004) Identifying adaptive divergence among populations from genome scans. Mol Ecol 13:969–980. https://doi.org/10.1111/j.1365-294X.2004.02125.x. (PMID: 10.1111/j.1365-294X.2004.02125.x15012769)
Busch JW, Schoen DJ (2008) The evolution of self-incompatibility when mates are limiting. Trends Plant Sci 13:128–136. https://doi.org/10.1016/j.tplants.2008.01.002. (PMID: 10.1016/j.tplants.2008.01.00218296103)
Charlesworth B, Morgan MT, Charlesworth D (1993) The effect of deleterious mutations on neutral molecular variation. Genetics 134:1289–1303. https://doi.org/10.1534/genetics.116.196170. (PMID: 10.1534/genetics.116.19617083756631205596)
Charlesworth D, Charlesworth B (1987) Inbreeding depression and its evolutionary consequences. Ann Rev Ecol Evol Syst 18:237–268. (PMID: 10.1146/annurev.es.18.110187.001321)
Charlesworth D, Charlesworth B (1995) Quantitative genetics in plants: the effect of the breeding system on genetic variability. Evolution 49:911–920. https://doi.org/10.2307/2410413. (PMID: 10.2307/241041328564864)
Charlesworth D, Wright SI (2001) Breeding systems and genome evolution. Curr Opin Genet Dev 11:685–690. https://doi.org/10.1016/S0959-437X(00)00254-9. (PMID: 10.1016/S0959-437X(00)00254-911682314)
Charlesworth D (2003) Effects of inbreeding on the genetic diversity of populations. Philos Trans R Soc Lond B Biol Sci 358:1051–1070. https://doi.org/10.1098/rstb.2003.1296. (PMID: 10.1098/rstb.2003.1296128314721693193)
Charlesworth D, Willis JH (2009) The genetics of inbreeding depression. Nat Rev Genet 10:783–796. https://doi.org/10.1038/nrg2664. (PMID: 10.1038/nrg266419834483)
Chase A (1929) The North American Species of Paspalum. Contr US Natl Herb 28(IXVII):1–310.
Chiang YH, Schaal BA, Chou CH, Huang S, Chiang TY (2003) Contrasting selection modes at the Adh1 locus in outcrossing Miscanthus sinensis vs. inbreeding Miscanthus condensatus (Poaceae). Am J Bot 90:561–570. https://doi.org/10.3732/ajb.90.4.561. (PMID: 10.3732/ajb.90.4.56121659149)
Crawford DJ, Ornduff R, Vasey MC (1985) Allozyme variation within and between Lasthenia minor and its derivative species, Lasthenia maritima (Asteraceae). Am J Bot 72:1177–1184. https://doi.org/10.1002/j.1537-2197.1985.tb08370.x. (PMID: 10.1002/j.1537-2197.1985.tb08370.x)
Duminil J, Fineschi S, Hampe A, Jordano P, Salvini D, Vendramin GG, Petit RJ (2007) Can population genetic structure be predicted from life-history traits? Am Nat 169:662–672. https://doi.org/10.1086/513490. (PMID: 10.1086/51349017427136)
Earl DA, von Holdt BM (2012) Structure harvester: a website and program for visualizing structure output and implementing the Evanno method. Conserv Genetic Resour 4:359–361. https://doi.org/10.1007/s12686-011-9548-7. (PMID: 10.1007/s12686-011-9548-7)
Eckert CG, Samis KE, Dart S (2006) Reproductive assurance and the evolution of uniparental reproduction in flowering plants. In: Harder LD, Barrett SCH (eds) Ecology and evolution of flowers. Oxford University Press, New York, pp 183–203. (PMID: 10.1093/oso/9780198570851.003.0010)
Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620. https://doi.org/10.1111/j.1365-294X.2005.02553.x. (PMID: 10.1111/j.1365-294X.2005.02553.x15969739)
Fenster CB, Ritland K (1992) Chloroplast DNA and isozyme diversity in two Mimulus species (Scrophulariaceae) with contrasting mating systems. Am J Bot 79:1440–1447. https://doi.org/10.2307/2445145. (PMID: 10.2307/2445145)
Foxe JP, Stift M, Tedder A, Haudry A, Mable WBK (2010) Reconstructing origins of loss of self-incompatibility and selfing in north American Arabidopsis lyrata: a population genetic context. Evolution 64:3495–3510. https://doi.org/10.1111/j.1558-5646.2010.01094.x. (PMID: 10.1111/j.1558-5646.2010.01094.x20681985)
Garcia-Gonzalez F, Yasui Y, Evans JP (2015) Mating portfolios: bet-hedging, sexual selection and female multiple mating. Proc R Soc Lond B Biol Sci 282:20141525. https://doi.org/10.1098/rspb.2014.1525. (PMID: 10.1098/rspb.2014.1525)
Gaudeul M, Till-Bottraud I, Barjon F, Manel S (2004) Genetic diversity and differentiation in Eryngium alpinum L. (Apiaceae): comparison of AFLP and microsatellite markers. Heredity 92:508–518. https://doi.org/10.1038/sj.hdy.6800443. (PMID: 10.1038/sj.hdy.680044315014426)
Glémin S, Bazin E, Charlesworth D (2006) Impact of mating systems on patterns of sequence polymorphism in flowering plants. Proc Biol Sci 273:3011–3019. https://doi.org/10.1098/rspb.2006.3657. (PMID: 10.1098/rspb.2006.3657170153491639510)
Goodwillie C, Kalisz S, Eckert CG (2005) The evolutionary enigma of mixed mating systems in plants: occurrence, theoretical explanations, and empirical evidence. Ann Rev Ecol Evolut Syst 36:47–79. (PMID: 10.1146/annurev.ecolsys.36.091704.175539)
Goldberg EE, Igic B (2012) Tempo and mode in plant breeding system evolution. Evolution 66:3701–3709. https://doi.org/10.1111/j.1558-5646.2012.01730.x. (PMID: 10.1111/j.1558-5646.2012.01730.x23206129)
Hamrick JL, Linhart YB, Mitton JB (1979) Relationships between life history characteristics and electrophoretically detectable genetic variation in plants. Annu Rev Ecol Syst 10:173–200. (PMID: 10.1146/annurev.es.10.110179.001133)
Hamrick JL, Godt MJW (1989) Allozyme diversity in plant species. In: Brown AHD, Clegg MT, Kahler AL, Weir BS (eds) Plant population genetics, breeding and genetic resources. Sinauer Associates, Sunderland, pp 43–63.
Hamrick JL, Godt MJW (1996) Effects of life history traits on genetic diversity in plant species. Philos Trans R Soc Lond B Biol Sci 351:1291–1298. https://doi.org/10.1098/rstb.1996.0112. (PMID: 10.1098/rstb.1996.0112)
Harder LD, Aizen MA, Richards SA (2016) The population ecology of male gametophytes: the link between pollination and seed production. Ecol Lett 19:497–509. https://doi.org/10.1111/ele.12596. (PMID: 10.1111/ele.1259626970246)
Hartings H, Berardo N, Mazzinelli GF, Valoti P, Verderio A, Motto M (2008) Assessment of genetic diversity and relationships among maize (Zea mays L.) Italian landraces by morphological traits and AFLP profiling. Theor Appl Genet 117:831–842. https://doi.org/10.1007/s00122-008-0823-2. (PMID: 10.1007/s00122-008-0823-218584146)
Holsinger KE, Lewis PO, Dey DK (2002) A Bayesian approach to inferring population structure from dominant markers. Mol Ecol 11:1157–1164. https://doi.org/10.1046/j.1365-294X.2002.01512.x. (PMID: 10.1046/j.1365-294X.2002.01512.x12074723)
Holsinger KE, Lewis PO (2003–2007) Hickory: a package for analysis of population genetic data v1.1.
Hörandl E (2010) The evolution of self-fertility in apomictic plants. Sex Plant Reprod 23:73–86. https://doi.org/10.1007/s00497-009-0122-3. (PMID: 10.1007/s00497-009-0122-320165965)
Huang R, Chu QH, Lu GH, Wang YQ (2019) Comparative studies on population genetic structure of two closely related selfing and outcrossing Zingiber species in Hainan Island. Sci Rep 9:17997. https://doi.org/10.1038/s41598-019-54526-y. (PMID: 10.1038/s41598-019-54526-y317846236884562)
Ingvarsson PK (2002) A metapopulation perspective on genetic diversity and differentiation in partially self-fertilizing plants. Evolution 56:2368–2373. https://doi.org/10.1111/j.0014-3820.2002.tb00162.x. (PMID: 10.1111/j.0014-3820.2002.tb00162.x12583577)
Jarne P, Charlesworth D (1993) The evolution of the selfing rate in functionally hermaphrodite plants and animals. Annu Rev Ecol Syst 24(1):441–466. (PMID: 10.1146/annurev.es.24.110193.002301)
Kamran-Disfani A, Agrawal AF (2014) Selfing, adaptation and background selection in finite populations. J Evol Biol 27(7):1360–1371. (PMID: 10.1111/jeb.1234324601989)
Karunarathne P, Hojsgaard D (2021) Single independent autopolyploidization events from distinct diploid gene pools and residual sexuality support range expansion of locally adapted tetraploid genotypes in a South American grass. Front Genet 12:736088. https://doi.org/10.3389/fgene.2021.736088. (PMID: 10.3389/fgene.2021.736088346713848520906)
Kevin KS, Lee SL, Koh CL (2004) Spatial structure and genetic diversity of two tropical tree species with contrasting breeding systems ad different ploidy levels. Mol Ecol 13:657–669. https://doi.org/10.1046/j.l365-294X.2004.02094.x. (PMID: 10.1046/j.l365-294X.2004.02094.x)
Kimura M, Weiss GH (1964) The stepping stone model of population structure and the decrease of genetic correlation with distance. Genetics 49:561. (PMID: 10.1093/genetics/49.4.561172482041210594)
Knowles PF (1943) Improving an annual brome grass, Bromus mollis L. for range purposes. J Am Soc Agron 35:584–594. https://doi.org/10.2134/agronj1943.00021962003500070005x. (PMID: 10.2134/agronj1943.00021962003500070005x)
Lande R, Barrowclough G (1987) Effective population size, genetic variation, and their use in population. In: Soulé ME (ed) Viable Populations for Conservation Chapter 6. Cambridge University Press, Cambridge, pp 87–123. https://doi.org/10.1017/CBO9780511623400. (PMID: 10.1017/CBO9780511623400)
Lande R (2014) Evolution of phenotypic plasticity in colonizing species. Mol Ecol 24:2038–2045. https://doi.org/10.1111/jeb.12360. (PMID: 10.1111/jeb.12360)
Liu F, Zhang L, Charlesworth D (1998) Genetic diversity in Leavenworthia populations with different inbreeding levels. Proc R Soc Lond B Biol Sci 265:293–301. (PMID: 10.1098/rspb.1998.0295)
Liu F, Charlesworth D, Kreitman M (1999) The effect of mating system differences on nucleotide diversity at the phosphoglucose isomerase locus in the plant genus Leavenworthia. Genetics 151:343–357. https://doi.org/10.1093/genetics/151.1.343. (PMID: 10.1093/genetics/151.1.34398729721460463)
Loureiro I, Escorial MC, Chueca MC (2016) Pollen-mediated movement of herbicide resistance genes in Lolium rigidum. PLoS ONE 11:6. https://doi.org/10.1371/journal.pone.0157892. (PMID: 10.1371/journal.pone.0157892)
Mable BK, Adam A (2007) Patterns of genetic diversity in outcrossing and selfing populations of Arabidopsis lyrata. Mol Ecol 16:3565–3580. https://doi.org/10.1111/j.1365-294X.2007.03416.x. (PMID: 10.1111/j.1365-294X.2007.03416.x17845431)
Meirmans PG, Van Tienderen PH (2004) GENOTYPE and GENODIVE: two programs for the analysis of genetic diversity of asexual organisms. Mol Ecol Notes 4(4):792–794. https://doi.org/10.1111/j.1471-8286.2004.00770.x. (PMID: 10.1111/j.1471-8286.2004.00770.x)
Millwood R, Nageswara-Rao M, Ye R, Terry-Emert E, Johnson CR, Hanson M, Burris JN, Kwit C, Stewart CN Jr (2017) Pollen-mediated gene flow from transgenic to non-transgenic switchgrass (Panicum virgatum L.) in the field. BMC Biotechnol 17(1):40. https://doi.org/10.1186/s12896-017-0363-4. (PMID: 10.1186/s12896-017-0363-4284648515414321)
Morrone O, Hunziker JH, Zuloaga FO, Escobar A (1995) Números cromosómicos en paniceaes sudamericanas (Poaceae, Panicoideae). Darwiniana 33:53–60.
Nei M, Maruyama T, Chakraborty R (1975) The bottleneck effect and genetic variability in populations. Evolution 29:1–10. https://doi.org/10.2307/2407137. (PMID: 10.2307/240713728563291)
Nora S, Aparicio A, Albaladejo RG (2016) High correlated paternity leads to negative effects on progeny performance in two Mediterranean shrub species. PLoS ONE 11:e0166023. https://doi.org/10.1371/journal.pone.0166023. (PMID: 10.1371/journal.pone.0166023278356585106039)
Nordborg M (2000) Linkage disequilibrium, gene trees and selfing: an ancestral recombination graph with partial self-fertilization. Genetics 154:923–929. https://doi.org/10.1093/genetics/154.2.923. (PMID: 10.1093/genetics/154.2.923106552411460950)
Nybom H, Bartish IV (2000) Effects of life history traits and sampling strategies on genetic diversity estimates obtained with RAPD markers in plants. Perspect Plant Ecol Evolut Syst 3:93–114. https://doi.org/10.1078/1433-8319-00006. (PMID: 10.1078/1433-8319-00006)
Nybom H (2004) Comparison of different nuclear DNA markers for estimating intraspecific genetic diversity in plants. Mol Ecol 13:1143–1155. https://doi.org/10.1111/j.1365-294X.2004.02141.x. (PMID: 10.1111/j.1365-294X.2004.02141.x15078452)
Ortiz MÁ, Tremetsberger K, Talavera S, Stuessy T, García-Castaño JL (2007) Population structure of Hypochaeris salzmanniana DC. (Asteraceae), an endemic species to the Atlantic coast on both sides of the strait of Gibraltar, in relation to quaternary sea level changes. Mol Ecol 16:541–552. https://doi.org/10.1111/j.1365-294X.2006.03157.x. (PMID: 10.1111/j.1365-294X.2006.03157.x17257112)
Ortiz JPA, Quarin CL, Pessino SC et al (2013) Harnessing apomictic reproduction in grasses: what we have learned from Paspalum. Ann Bot 112:767–787. https://doi.org/10.1093/aob/mct152. (PMID: 10.1093/aob/mct152238640043747805)
Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in excel. Mol Ecol Notes 6:288–295. https://doi.org/10.1111/j.1471-8286.2005.01155.x. (PMID: 10.1111/j.1471-8286.2005.01155.x)
Pérusse JR, Schoen DJ (2004) Molecular evolution of the GapC gene family in Amsinckia spectabilis populations that differ in outcrossing rate. J Mol Evol 59:427–436. https://doi.org/10.1007/s00239-004-2623-x. (PMID: 10.1007/s00239-004-2623-x15638454)
Pollak E (1987) On the theory of partially inbreeding finite populations. I. Partial selfing. Genetics 117:353–360. https://doi.org/10.1093/genetics/117.2.353. (PMID: 10.1093/genetics/117.2.35336664461203210)
Porcher E, Lande R (2005) Loss of gametophytic self-incompatibility with evolution of inbreeding depression. Evolution 59:46–60. https://doi.org/10.1111/j.0014-3820.2005.tb00893.x. (PMID: 10.1111/j.0014-3820.2005.tb00893.x15792226)
Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959. https://doi.org/10.1093/genetics/155.2.945. (PMID: 10.1093/genetics/155.2.945108354121461096)
Quarin CL, Burson BL (1983) Cytogenetic relations among Paspalum notatum var. saurae, P. pumilum, P. indecorum, and P. vaginatum. Bot Gaz 144:433–438. https://doi.org/10.1086/337394. (PMID: 10.1086/337394)
R Core Team (2020) R: a language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria. https://www.R-project.org/.
Rathcke B, Lacey EP (1985) Phenological patterns of terrestrial plants. Annu Rev Ecol Syst 16:179–214. (PMID: 10.1146/annurev.es.16.110185.001143)
Reisch C, Bernhardt-Römermann M (2014) The impact of study design and life history traits on genetic variation of plants determined with AFLPs. Plant Ecol 215:1493–1511. (PMID: 10.1007/s11258-014-0409-9)
Reutemann AV, Martínez EJ, Schedler M, Daviña JR, Hojsgaard DH, Honfi AI (2022) Uniparentality: advantages for range expansion in diploid and diploid-autopolyploid species. Bot J Linn Soc 200:563–585. https://doi.org/10.1093/botlinnean/boac036. (PMID: 10.1093/botlinnean/boac036)
Richards SA, Williams NM, Harder LD (2009) Variation in pollination: causes and consequences for plant reproduction. Am Nat 174:382–398. https://doi.org/10.1086/603626. (PMID: 10.1086/60362619627226)
Rua GH, Speranza PR, Vaio M, Arakaki M (2010) A phylogenetic analysis of the genus Paspalum (Poaceae) based on cpDNA and morphology. Plant Syst Evol 288:227–243. https://doi.org/10.1007/s00606-010-0327-9. (PMID: 10.1007/s00606-010-0327-9)
Savolainen O, Langley CH, Lazzaro BP, Fréville H (2000) Contrasting patterns of nucleotide polymorphism at the alcohol dehydrogenase locus in the outcrossing Arabidopsis lyrata and the selfing Arabidopsis thaliana. Mol Biol Evol 17:645–655. https://doi.org/10.1093/oxfordjournals.molbev.a026343. (PMID: 10.1093/oxfordjournals.molbev.a02634310742055)
Scataglini MA, Zuloaga FO, Giussani LM, Denham SS, Morrone O (2014) Phylogeny of new world Paspalum (Poaceae, Panicoideae, Paspaleae) based on plastid and nuclear markers. Plant Syst Evol 300:1051–1070. https://doi.org/10.1007/s00606-013-0944-1. (PMID: 10.1007/s00606-013-0944-1)
Schemske DW, Lande R (1985) The evolution of self-fertilization and inbreeding depression in plants. II. Empirical observations. Evolution 39:41–52. https://doi.org/10.1111/j.1558-5646.1985.tb04078.x. (PMID: 10.1111/j.1558-5646.1985.tb04078.x28563649)
Schoen DJ, Brown AH (1991) Intraspecific variation in population gene diversity and effective population size correlates with the mating system in plants. Proc Natl Acad Sci 88:4494–4497. https://doi.org/10.1073/pnas.88.10.4494. (PMID: 10.1073/pnas.88.10.44941160718251687)
Snow L, Brody T (1984) Genetic variation in Hordeum spontaneum in Israel: eco-geographical races detected by trait measurements. Plant Syst Evol 145:15–28. https://doi.org/10.1007/BF00984028. (PMID: 10.1007/BF00984028)
St Onge KR, Källman T, Slotte T, Lascoux M, Palmé AE (2011) Contrasting demographic history and population structure in Capsella rubella and Capsella grandiflora, two closely related species with different mating systems. Mol Ecol 20:3306–3320. https://doi.org/10.1111/j.1365-294X.2011.05189.x. (PMID: 10.1111/j.1365-294X.2011.05189.x21777317)
Stebbins GL (1950) Variation and evolution in plants. Geoffrey Cumberlege, London, pp 1–643. (PMID: 10.7312/steb94536)
Sweigart AL, Willis JH (2003) Patterns of nucleotide diversity in two species of Mimulus are affected by mating system and asymmetric introgression. Evolution 57:2490–2506. https://doi.org/10.1111/j.0014-3820.2003.tb01494.x. (PMID: 10.1111/j.0014-3820.2003.tb01494.x14686526)
Takebayashi N, Delph LF (2000) An association between a floral trait and inbreeding depression. Evolution 54:840–846. https://doi.org/10.1111/j.0014-3820.2000.tb00084.x. (PMID: 10.1111/j.0014-3820.2000.tb00084.x10937257)
Uyenoyama MK, Waller DM (1991) Coevolution of self-fertilization and inbreeding depression I. Mutation-selection balance at one and two loci. Theor Popul Biol 40:14–46. https://doi.org/10.1016/0040-5809(91)90045-h. (PMID: 10.1016/0040-5809(91)90045-h1948770)
Vos P, Hogers R, Bleeker M et al (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414. https://doi.org/10.1093/nar/23.21.4407. (PMID: 10.1093/nar/23.21.44077501463307397)
Watrud LS, Lee EH, Fairbrother A et al (2004) Evidence for landscape-level, pollen-mediated gene flow from genetically modified creeping bentgrass with CP4 EPSPS as a marker. Proc Natl Acad Sci 101(40):14533–14538. https://doi.org/10.1073/pnas.0405154101. (PMID: 10.1073/pnas.040515410115448206521937)
Wright S (1945) Isolation by distance under diverse systems of mating. Genetics 31:39–59. (PMID: 10.1093/genetics/31.1.39)
Wright S (1950) Genetic structure of populations. BMJ 2(4669):323–354.
Wright S (1969) Evolution and genetics of populations. The theory of gene frequencies, vol 2. Univ Chicago Press, Chicago.
Wright SI, Kalisz S, Slotte T (2013) Evolutionary consequences of self-fertilization in plants. Proc R Soc B Biol Sci 280:20130133. https://doi.org/10.1098/rspb.2013.0133. (PMID: 10.1098/rspb.2013.0133)
Zhong GY, Qualset CO (1995) Quantitative genetic diversity and conservation strategies for an allogamous annual species, Dasypyrum villosum (L.) Candargy (Poaceae). Theor Appl Geneti 91:1064–1073. https://doi.org/10.1007/BF00223920. (PMID: 10.1007/BF00223920)
Zuloaga FO, Morrone O (2005) Revisión de las Especies de Paspalum para América del Sur Austral. Monographs in Systematic Botany from the Missouri Botanical Garden 102:1–29.
معلومات مُعتمدة: HO5462-1/1 Programa Bilateral DFG-MINCyT-CONICET; RD-20150202-0167 Programa Bilateral DFG-MINCyT-CONICET; PICT 2012-0261 Fondo para la Investigación Científica y Tecnológica; PICT RAICES 2015-1245 Fondo para la Investigación Científica y Tecnológica; PICT RAICES 2017-4203 Fondo para la Investigación Científica y Tecnológica; PICT 2020-3783 Fondo para la Investigación Científica y Tecnológica; PI 16A002 Secretaría General de Ciencia y Técnica, Universidad Nacional del Nordeste
فهرسة مساهمة: Keywords: Gene flow; Mating system; Molecular variation; Morphological variation; Population structure; Sexuality
تواريخ الأحداث: Date Created: 20230811 Date Completed: 20240221 Latest Revision: 20240307
رمز التحديث: 20240307
DOI: 10.1007/s00497-023-00478-3
PMID: 37566236
قاعدة البيانات: MEDLINE
الوصف
تدمد:2194-7961
DOI:10.1007/s00497-023-00478-3