دورية أكاديمية

Diagnosis and management of patients with left ventricular hypertrophy: Role of multimodality cardiac imaging. A scientific statement of the Heart Failure Association of the European Society of Cardiology.

التفاصيل البيبلوغرافية
العنوان: Diagnosis and management of patients with left ventricular hypertrophy: Role of multimodality cardiac imaging. A scientific statement of the Heart Failure Association of the European Society of Cardiology.
المؤلفون: Moura B; Faculty of Medicine, University of Porto, Porto, Portugal.; Cardiology Department, Porto Armed Forces Hospital, Porto, Portugal., Aimo A; Scuola Superiore Sant'Anna, Pisa, Italy.; Fondazione Toscana Gabriele Monasterio, Pisa, Italy., Al-Mohammad A; South Yorkshire Cardiothoracic Centre (Northern General Hospital), Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK., Keramida K; Cardiology Department, General Anti-Cancer, Oncological Hospital Agios Savvas, Athens, Greece., Ben Gal T; Rabin Medical Center, Petach Tikva, Israel.; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel., Dorbala S; Department of Radiology, Brigham and Women's Hospital, Boston, MA, USA., Todiere G; Scuola Superiore Sant'Anna, Pisa, Italy.; Fondazione Toscana Gabriele Monasterio, Pisa, Italy., Cameli M; Cardiology Division, University Hospital of Siena, Siena, Italy., Barison A; Fondazione Toscana Gabriele Monasterio, Pisa, Italy., Bayes-Genis A; Institut del Cor, Hospital Universitari Germans Trias i Pujol, Barcelona, Spain.; Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain.; CIBERCV, Carlos III Institute of Health, Madrid, Spain., von Bardeleben RS; Centre of Structural Heart Disease Interventions and Heart Valve Centre, Mainz, Germany., Bucciarelli-Ducci C; Royal Brompton and Harefield Hospitals, Guys' and St Thomas NHS Trust, London, UK., Delgado V; Institut del Cor, Hospital Universitari Germans Trias i Pujol, Barcelona, Spain., Mordi IR; Division of Molecular and Clinical Medicine, School of Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK., Seferovic P; Serbian Academy of Sciences and Arts, Belgrade, Serbia.; University of Belgrade Faculty of Medicine, Belgrade, Serbia., Savarese G; Division of Cardiology, Department of Medicine, Karolinska Institutet, Stockholm, Sweden.; Department of Cardiology, Heart and Vascular and Neuro Theme, Karolinska University Hospital, Stockholm, Sweden., Čelutkienė J; Vilnius University, Faculty of Medicine, Vilnius, Lithuania.; State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania., Rapezzi C; Cardiology Centre, University of Ferrara, Ferrara, Italy.; Maria Cecilia Hospital, GVM Care & Research, Cotignola, Italy., Emdin M; Faculty of Medicine, University of Porto, Porto, Portugal.; Cardiology Department, Porto Armed Forces Hospital, Porto, Portugal., Coats A; Heart Research Institute, Sydney, Australia., Metra M; Cardiology, ASST Spedali Civili and Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, Brescia, Italy., Rosano G; IRCCS San Raffaele Roma, Rome, Italy.
المصدر: European journal of heart failure [Eur J Heart Fail] 2023 Sep; Vol. 25 (9), pp. 1493-1506. Date of Electronic Publication: 2023 Sep 04.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Wiley Country of Publication: England NLM ID: 100887595 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1879-0844 (Electronic) Linking ISSN: 13889842 NLM ISO Abbreviation: Eur J Heart Fail Subsets: MEDLINE
أسماء مطبوعة: Publication: 2014- : Chichester : Wiley
Original Publication: Amsterdam ; New York : Elsevier Science, c1999-
مواضيع طبية MeSH: Heart Failure*/diagnostic imaging , Heart Failure*/therapy , Cardiology*, Humans ; Hypertrophy, Left Ventricular/diagnostic imaging ; Cardiac Imaging Techniques/methods ; Echocardiography ; Ventricular Function, Left/physiology
مستخلص: Left ventricular (LV) hypertrophy consists in an increased LV wall thickness. LV hypertrophy can be either secondary, in response to pressure or volume overload, or primary, i.e. not explained solely by abnormal loading conditions. Primary LV hypertrophy may be due to gene mutations or to the deposition or storage of abnormal substances in the extracellular spaces or within the cardiomyocytes (more appropriately defined as pseudohypertrophy). LV hypertrophy is often a precursor to subsequent development of heart failure. Cardiovascular imaging plays a key role in the assessment of LV hypertrophy. Echocardiography, the first-line imaging technique, allows a comprehensive assessment of LV systolic and diastolic function. Cardiovascular magnetic resonance provides added value as it measures accurately LV and right ventricular volumes and mass and characterizes myocardial tissue properties, which may provide important clues to the final diagnosis. Additionally, scintigraphy with bone tracers is included in the diagnostic algorithm of cardiac amyloidosis. Once the diagnosis is established, imaging findings may help predict future disease evolution and inform therapy and follow-up. This consensus document by the Heart Failure Association of the European Society of Cardiology provides an overview of the role of different cardiac imaging techniques for the differential diagnosis and management of patients with LV hypertrophy.
(© 2023 European Society of Cardiology.)
References: Elliott PM, Anastasakis A, Borger MA, Borggrefe M, Cecchi F, Charron P, et al. 2014 ESC Guidelines on diagnosis and management of hypertrophic cardiomyopathy: The Task Force for the diagnosis and management of hypertrophic cardiomyopathy of the European Society of Cardiology (ESC). Eur Heart J. 2014;35:2733-2779. https://doi.org/10.1093/eurheartj/ehu284.
Seferović PM, Polovina M, Bauersachs J, Arad M, Ben Gal T, Lund LH, et al. Heart failure in cardiomyopathies: A position paper from the Heart Failure Association of the European Society of Cardiology. Eur J Heart Fail. 2019;21:553-576. https://doi.org/10.1002/ejhf.1461.
Claes GR, van Tienen FH, Lindsey P, Krapels IP, Helderman-van den Enden AT, Hoos MB, et al. Hypertrophic remodelling in cardiac regulatory myosin light chain (MYL2) founder mutation carriers. Eur Heart J. 2016;37:1815-1822. https://doi.org/10.1093/eurheartj/ehv522.
Rapezzi C, Aimo A, Barison A, Emdin M, Porcari A, Linhart A, et al. Restrictive cardiomyopathy: Definition and diagnosis. Eur Heart J. 2022;43:4679-4693. https://doi.org/10.1093/eurheartj/ehac543.
Mentias A, Raeisi-Giglou P, Smedira NG, Feng K, Sato K, Wazni O, et al. Late gadolinium enhancement in patients with hypertrophic cardiomyopathy and preserved systolic function. J Am Coll Cardiol. 2018;72:857-870. https://doi.org/10.1016/j.jacc.2018.05.060.
Fontana M, Pica S, Reant P, Abdel-Gadir A, Treibel TA, Banypersad SM, et al. Prognostic value of late gadolinium enhancement cardiovascular magnetic resonance in cardiac amyloidosis. Circulation. 2015;132:1570-1579. https://doi.org/10.1161/CIRCULATIONAHA.115.016567.
Martinez-Naharro A, Patel R, Kotecha T, Karia N, Ioannou A, Petrie A, et al. Cardiovascular magnetic resonance in light-chain amyloidosis to guide treatment. Eur Heart J. 2022;43:4722-4735. https://doi.org/10.1093/eurheartj/ehac363.
Sado DM, Flett AS, Banypersad SM, White SK, Maestrini V, Quarta G, et al. Cardiovascular magnetic resonance measurement of myocardial extracellular volume in health and disease. Heart. 2012;98:1436-1441. https://doi.org/10.1136/heartjnl-2012-302346.
Hughes RK, Knott KD, Malcolmson J, Augusto JB, Mohiddin SA, Kellman P, et al. Apical hypertrophic cardiomyopathy: The variant less known. J Am Heart Assoc. 2020;9:e015294. https://doi.org/10.1161/JAHA.119.015294.
Olivotto I, Cecchi F, Poggesi C, Yacoub MH. Patterns of disease progression in hypertrophic cardiomyopathy: An individualized approach to clinical staging. Circ Heart Fail. 2012;5:535-546. https://doi.org/10.1161/CIRCHEARTFAILURE.112.967026.
Siqueira-Filho AG, Cunha CL, Tajik AJ, Seward JB, Schattenberg TT, Giuliani ER. M-mode and two-dimensional echocardiographic features in cardiac amyloidosis. Circulation. 1981;63:188-196. https://doi.org/10.1161/01.cir.63.1.188.
Mozaffarian D, Caldwell JH. Right ventricular involvement in hypertrophic cardiomyopathy: A case report and literature review. Clin Cardiol. 2001;24:2-8. https://doi.org/10.1002/clc.4960240102.
Arvidsson S, Henein MY, Wikström G, Suhr OB, Lindqvist P. Right ventricular involvement in transthyretin amyloidosis. Amyloid. 2018;25:160-166. https://doi.org/10.1080/13506129.2018.1493989.
Tjahjadi C, Fortuni F, Stassen J, Debonnaire P, Lustosa RP, Marsan NA, et al. Prognostic implications of right ventricular systolic dysfunction in cardiac amyloidosis. Am J Cardiol. 2022;173:120-127. https://doi.org/10.1016/j.amjcard.2022.02.048.
Graziani F, Lillo R, Panaioli E, Pieroni M, Camporeale A, Verrecchia E, et al. Prognostic significance of right ventricular hypertrophy and systolic function in Anderson-Fabry disease. ESC Heart Fail. 2020;7:1605-1614. https://doi.org/10.1002/ehf2.12712.
Sun JP, Xu TY, Ni XD, Yang XS, Hu JL, Wang SC, et al. Echocardiographic strain in hypertrophic cardiomyopathy and hypertensive left ventricular hypertrophy. Echocardiography. 2019;36:257-265. https://doi.org/10.1111/echo.14222.
Haland TF, Almaas VM, Hasselberg NE, Saberniak J, Leren IS, Hopp E, et al. Strain echocardiography is related to fibrosis and ventricular arrhythmias in hypertrophic cardiomyopathy. Eur Heart J Cardiovasc Imaging. 2016;17:613-621. https://doi.org/10.1093/ehjci/jew005.
Cui H, Schaff HV, Nishimura RA, Geske JB, Dearani JA, Newman DB, et al. Preoperative left ventricular longitudinal strain predicts outcome of septal myectomy for obstructive hypertrophic cardiomyopathy. J Thorac Cardiovasc Surg. 2023;16G6:492-500.e2. https://doi.org/10.1016/j.jtcvs.2021.09.058.
Phelan D, Collier P, Thavendiranathan P, Popović ZB, Hanna M, Plana JC, et al. Relative apical sparing of longitudinal strain using two-dimensional speckle-tracking echocardiography is both sensitive and specific for the diagnosis of cardiac amyloidosis. Heart. 2012;98:1442-1448. https://doi.org/10.1136/heartjnl-2012-302353.
Palmiero G, Vetrano E, Rubino M, Monda E, Dongiglio F, Lioncino M, et al. The role of new imaging technologies in the diagnosis of cardiac amyloidosis. Heart Fail Clin. 2022;18:61-72. https://doi.org/10.1016/j.hfc.2021.07.014.
Garcia-Pavia P, Rapezzi C, Adler Y, Arad M, Basso C, Brucato A, et al. Diagnosis and treatment of cardiac amyloidosis: A position statement of the ESC Working Group on Myocardial and Pericardial Diseases. Eur Heart J. 2021;42:1554-1568. https://doi.org/10.1093/eurheartj/ehab072.
Brand A, Frumkin D, Hübscher A, Dreger H, Stangl K, Baldenhofer G, et al. Phasic left atrial strain analysis to discriminate cardiac amyloidosis in patients with unclear thick heart pathology. Eur Heart J Cardiovasc Imaging. 2021;22:680-687. https://doi.org/10.1093/ehjci/jeaa043.
Moñivas Palomero V, Durante-Lopez A, Sanabria MT, Cubero JS, González-Mirelis J, Lopez-Ibor JV, et al. Role of right ventricular strain measured by two-dimensional echocardiography in the diagnosis of cardiac amyloidosis. J Am Soc Echocardiogr. 2019;32:845-853.e1. https://doi.org/10.1016/j.echo.2019.03.005.
Cappelli F, Porciani MC, Bergesio F, Perlini S, Attanà P, Moggi Pignone A, et al. Right ventricular function in AL amyloidosis: Characteristics and prognostic implication. Eur Heart J Cardiovasc Imaging. 2012;13:416-422. https://doi.org/10.1093/ejechocard/jer289.
Aimo A, Fabiani I, Giannoni A, Mandoli GE, Pastore MC, Vergaro G, et al. Multi-chamber speckle tracking imaging and diagnostic value of left atrial strain in cardiac amyloidosis. Eur Heart J Cardiovasc Imaging. 2022;24:130-141. https://doi.org/10.1093/ehjci/jeac057.
Boldrini M, Cappelli F, Chacko L, Restrepo-Cordoba MA, Lopez-Sainz A, Giannoni A, et al. Multiparametric echocardiography scores for the diagnosis of cardiac amyloidosis. JACC Cardiovasc Imaging. 2020;13:909-920. https://doi.org/10.1016/j.jcmg.2019.10.011.
Aimo A, Chubuchny V, Vergaro G, Barison A, Nicol M, Cohen-Solal A, et al. A simple echocardiographic score to rule out cardiac amyloidosis. Eur J Clin Invest. 2021;51:e13449. https://doi.org/10.1111/eci.13449.
Esposito R, Santoro C, Mandoli GE, Cuomo V, Sorrentino R, La Mura L, et al. Cardiac imaging in Anderson-Fabry disease: Past, present and future. J Clin Med. 2021;10:1994. https://doi.org/10.3390/jcm10091994.
Esposito R, Galderisi M, Santoro C, Imbriaco M, Riccio E, Maria Pellegrino A, et al. Prominent longitudinal strain reduction of left ventricular basal segments in treatment-naïve Anderson-Fabry disease patients. Eur Heart J Cardiovasc Imaging. 2019;20:438-445. https://doi.org/10.1093/ehjci/jey108.
Labombarda F, Saloux E, Milesi G, Bienvenu B. Loss of base-to-apex circumferential strain gradient: A specific pattern of Fabry cardiomyopathy? Echocardiography. 2017;34:504-510. https://doi.org/10.1111/echo.13496.
Meucci MC, Lillo R, Lombardo A, Lanza GA, Bootsma M, Butcher SC, et al. Comparative analysis of right ventricular strain in Fabry cardiomyopathy and sarcomeric hypertrophic cardiomyopathy. Eur Heart J Cardiovasc Imaging. 2023;24:542-551. https://doi.org/10.1093/ehjci/jeac151.
Pontone G, Di Bella G, Castelletti S, Maestrini V, Festa P, Ait-Ali L, et al. Clinical recommendations of cardiac magnetic resonance, part II: Inflammatory and congenital heart disease, cardiomyopathies and cardiac tumors: A position paper of the working group ‘Applicazioni della Risonanza Magnetica’ of the Italian Society of Cardiology. J Cardiovasc Med (Hagerstown). 2017;18:209-222. https://doi.org/10.2459/JCM.0000000000000499.
Ommen SR, Mital S, Burke MA, Day SM, Deswal A, Elliott P, et al. 2020 AHA/ACC Guideline for the diagnosis and treatment of patients with hypertrophic cardiomyopathy: Executive summary: A report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation. 2020;142:e533-e557. https://doi.org/10.1161/CIR.0000000000000938.
Quarta G, Aquaro GD, Pedrotti P, Pontone G, Dellegrottaglie S, Iacovoni A, et al. Cardiovascular magnetic resonance imaging in hypertrophic cardiomyopathy: The importance of clinical context. Eur Heart J Cardiovasc Imaging. 2018;19:601-610. https://doi.org/10.1093/ehjci/jex323.
Kozor R, Nordin S, Treibel TA, Rosmini S, Castelletti S, Fontana M, Captur G, Baig S, Steeds RP, Hughes D, Manisty C, Grieve SM, Figtree GA and Moon JC. Insight into hypertrophied hearts: A cardiovascular magnetic resonance study of papillary muscle mass and T1 mapping. Eur Heart J Cardiovasc Imaging. 2017;18:1034-1040. https://doi.org/10.1093/ehjci/jew187.
Maron MS. Clinical utility of cardiovascular magnetic resonance in hypertrophic cardiomyopathy. J Cardiovasc Magn Reson. 2012;14:13. https://doi.org/10.1186/1532-429X-14-13.
Harrigan CJ, Appelbaum E, Maron BJ, Buros JL, Gibson CM, Lesser JR, et al. Significance of papillary muscle abnormalities identified by cardiovascular magnetic resonance in hypertrophic cardiomyopathy. Am J Cardiol. 2008;101:668-673. https://doi.org/10.1016/j.amjcard.2007.10.032.
Captur G, Lopes LR, Mohun TJ, Patel V, Li C, Bassett P, et al. Prediction of sarcomere mutations in subclinical hypertrophic cardiomyopathy. Circ Cardiovasc Imaging. 2014;7:863-871. https://doi.org/10.1161/CIRCIMAGING.114.002411.
Kato S, Nakamori S, Bellm S, Jang J, Basha T, Maron M, et al. Myocardial native T1 time in patients with hypertrophic cardiomyopathy. Am J Cardiol. 2016;118:1057-1062. https://doi.org/10.1016/j.amjcard.2016.07.010.
Flett AS, Hayward MP, Ashworth MT, Hansen MS, Taylor AM, Elliott PM, et al. Equilibrium contrast cardiovascular magnetic resonance for the measurement of diffuse myocardial fibrosis: Preliminary validation in humans. Circulation. 2010;122:138-144. https://doi.org/10.1161/CIRCULATIONAHA.109.930636.
Moon JC, Reed E, Sheppard MN, Elkington AG, Ho SY, Burke M, et al. The histologic basis of late gadolinium enhancement cardiovascular magnetic resonance in hypertrophic cardiomyopathy. J Am Coll Cardiol. 2004;43:2260-2264. https://doi.org/10.1016/j.jacc.2004.03.035.
Avanesov M, Münch J, Weinrich J, Well L, Säring D, Stehning C, et al. Prediction of the estimated 5-year risk of sudden cardiac death and syncope or non-sustained ventricular tachycardia in patients with hypertrophic cardiomyopathy using late gadolinium enhancement and extracellular volume CMR. Eur Radiol. 2017;27:5136-5145. https://doi.org/10.1007/s00330-017-4869-x.
Li Y, Liu X, Yang F, Wang J, Xu Y, Fang T, et al. Prognostic value of myocardial extracellular volume fraction evaluation based on cardiac magnetic resonance T1 mapping with T1 long and short in hypertrophic cardiomyopathy. Eur Radiol. 2021;31:4557-4567. https://doi.org/10.1007/s00330-020-07650-7.
Treibel TA, Fridman Y, Bering P, Sayeed A, Maanja M, Frojdh F, et al. Extracellular volume associates with outcomes more strongly than native or post-contrast myocardial T1. JACC Cardiovasc Imaging. 2020;13:44-54. https://doi.org/10.1016/j.jcmg.2019.03.017.
Castelletti S, Menacho K, Davies RH, Maestrini V, Treibel TA, Rosmini S, et al. Hypertrophic cardiomyopathy: Insights from extracellular volume mapping. Eur J Prev Cardiol. 2022;28:e39-e41. https://doi.org/10.1093/eurjpc/zwaa083.
Fontana M, Banypersad SM, Treibel TA, Maestrini V, Sado DM, White SK, et al. Native T1 mapping in transthyretin amyloidosis. JACC Cardiovasc Imaging. 2014;7:157-165. https://doi.org/10.1016/j.jcmg.2013.10.008.
Pan JA, Kerwin MJ, Salerno M. Native T1 mapping, extracellular volume mapping, and late gadolinium enhancement in cardiac amyloidosis: A meta-analysis. JACC Cardiovasc Imaging. 2020;13:1299-1310. https://doi.org/10.1016/j.jcmg.2020.03.010.
Barison A, Aimo A, Todiere G, Grigoratos C, Aquaro GD, Emdin M. Cardiovascular magnetic resonance for the diagnosis and management of heart failure with preserved ejection fraction. Heart Fail Rev. 2022;27:191-205. https://doi.org/10.1007/s10741-020-09998-w.
Perry R, Shah R, Saiedi M, Patil S, Ganesan A, Linhart A, et al. The role of cardiac imaging in the diagnosis and Management of Anderson-Fabry Disease. JACC Cardiovasc Imaging. 2019;12:1230-1242. https://doi.org/10.1016/j.jcmg.2018.11.039.
Dorbala S, Cuddy S, Falk RH. How to image cardiac amyloidosis: A practical approach. JACC Cardiovasc Imaging. 2020;13:1368-1383. https://doi.org/10.1016/j.jcmg.2019.07.015.
Syed IS, Glockner JF, Feng D, Araoz PA, Martinez MW, Edwards WD, et al. Role of cardiac magnetic resonance imaging in the detection of cardiac amyloidosis. JACC Cardiovasc Imaging. 2010;3:155-164. https://doi.org/10.1016/j.jcmg.2009.09.023.
Kozor R, Grieve SM, Tchan MC, Callaghan F, Hamilton-Craig C, Denaro C, et al. Cardiac involvement in genotype-positive Fabry disease patients assessed by cardiovascular MR. Heart. 2016;102:298-302. https://doi.org/10.1136/heartjnl-2015-308494.
Moon JC, Sachdev B, Elkington AG, McKenna WJ, Mehta A, Pennell DJ, et al. Gadolinium enhanced cardiovascular magnetic resonance in Anderson-Fabry disease. Evidence for a disease specific abnormality of the myocardial interstitium. Eur Heart J. 2003;24:2151-2155. https://doi.org/10.1016/j.ehj.2003.09.017.
Niemann M, Herrmann S, Hu K, Breunig F, Strotmann J, Beer M, et al. Differences in Fabry cardiomyopathy between female and male patients: Consequences for diagnostic assessment. JACC Cardiovasc Imaging. 2011;4:592-601. https://doi.org/10.1016/j.jcmg.2011.01.020.
Wei X, Zhao L, Xie J, Liu Y, Du Z, Zhong X, et al. Cardiac phenotype characterization at MRI in patients with Danon disease: A retrospective multicenter case series. Radiology. 2021;299:303-310. https://doi.org/10.1148/radiol.2021203996.
Amano Y, Yanagisawa F, Tachi M, Hashimoto H, Imai S, Kumita S. Myocardial T2 mapping in patients with hypertrophic cardiomyopathy. J Comput Assist Tomogr. 2017;41:344-348. https://doi.org/10.1097/RCT.0000000000000521.
Nordin S, Kozor R, Bulluck H, Castelletti S, Rosmini S, Abdel-Gadir A, et al. Cardiac Fabry disease with late gadolinium enhancement is a chronic inflammatory cardiomyopathy. J Am Coll Cardiol. 2016;68:1707-1708. https://doi.org/10.1016/j.jacc.2016.07.741.
Augusto JB, Nordin S, Vijapurapu R, Baig S, Bulluck H, Castelletti S, et al. Myocardial edema, myocyte injury, and disease severity in Fabry disease. Circ Cardiovasc Imaging. 2020;13:e010171. https://doi.org/10.1161/CIRCIMAGING.119.010171.
Gastl M, Gotschy A, von Spiczak J, Polacin M, Bönner F, Gruner C, et al. Cardiovascular magnetic resonance T2* mapping for structural alterations in hypertrophic cardiomyopathy. Eur J Radiol Open. 2019;6:78-84. https://doi.org/10.1016/j.ejro.2019.01.007.
Ariga R, Tunnicliffe EM, Manohar SG, Mahmod M, Raman B, Piechnik SK, et al. Identification of myocardial disarray in patients with hypertrophic cardiomyopathy and ventricular arrhythmias. J Am Coll Cardiol. 2019;73:2493-2502. https://doi.org/10.1016/j.jacc.2019.02.065.
Stats MA, Stone JR. Varying levels of small microcalcifications and macrophages in ATTR and AL cardiac amyloidosis: Implications for utilizing nuclear medicine studies to subtype amyloidosis. Cardiovasc Pathol. 2016;25:413-417. https://doi.org/10.1016/j.carpath.2016.07.001.
Rapezzi C, Gagliardi C, Milandri A. Analogies and disparities among scintigraphic bone tracers in the diagnosis of cardiac and non-cardiac ATTR amyloidosis. J Nucl Cardiol. 2019;26:1638-1641. https://doi.org/10.1007/s12350-018-1235-6.
Martinez-Naharro A, Baksi AJ, Hawkins PN, Fontana M. Diagnostic imaging of cardiac amyloidosis. Nat Rev Cardiol. 2020;17:413-426. https://doi.org/10.1038/s41569-020-0334-7.
Grigoratos C, Aimo A, Rapezzi C, Genovesi D, Barison A, Aquaro GD, et al. Diphosphonate single-photon emission computed tomography in cardiac transthyretin amyloidosis. Int J Cardiol. 2020;307:187-192. https://doi.org/10.1016/j.ijcard.2020.02.030.
Hanna M, Ruberg FL, Maurer MS, Dispenzieri A, Dorbala S, Falk RH, et al. Cardiac scintigraphy with technetium-99m-labeled bone-seeking tracers for suspected amyloidosis: JACC review topic of the week. J Am Coll Cardiol. 2020;75:2851-2862. https://doi.org/10.1016/j.jacc.2020.04.022.
Perugini E, Guidalotti PL, Salvi F, Cooke RM, Pettinato C, Riva L, et al. Noninvasive etiologic diagnosis of cardiac amyloidosis using 99mTc-3,3-diphosphono-1,2-propanodicarboxylic acid scintigraphy. J Am Coll Cardiol. 2005;46:1076-1084. https://doi.org/10.1016/j.jacc.2005.05.073.
Bokhari S, Castaño A, Pozniakoff T, Deslisle S, Latif F, Maurer MS. 99mTc-pyrophosphate scintigraphy for differentiating light-chain cardiac amyloidosis from the transthyretin-related familial and senile cardiac amyloidoses. Circ Cardiovasc Imaging. 2013;6:195-201. https://doi.org/10.1161/CIRCIMAGING.112.000132.
Castano A, Haq M, Narotsky DL, Goldsmith J, Weinberg RL, Morgenstern R, et al. Multicenter study of planar technetium 99m pyrophosphate cardiac imaging: Predicting survival for patients with ATTR cardiac amyloidosis. JAMA Cardiol. 2016;1:880-889. https://doi.org/10.1001/jamacardio.2016.2839.
Rapezzi C, Aimo A, Serenelli M, Barison A, Vergaro G, Passino C, et al. Critical comparison of documents from scientific societies on cardiac amyloidosis: JACC state-of-the-art review. J Am Coll Cardiol. 2022;79:1288-1303. https://doi.org/10.1016/j.jacc.2022.01.036.
Caobelli F, Braun M, Haaf P, Wild D, Zellweger MJ. Quantitative (99m)Tc-DPD SPECT/CT in patients with suspected ATTR cardiac amyloidosis: Feasibility and correlation with visual scores. J Nucl Cardiol. 2020;27:1456-1463. https://doi.org/10.1007/s12350-019-01893-8.
Brownrigg J, Lorenzini M, Lumley M, Elliott P. Diagnostic performance of imaging investigations in detecting and differentiating cardiac amyloidosis: A systematic review and meta-analysis. ESC Heart Fail. 2019;6:1041-1051. https://doi.org/10.1002/ehf2.12511.
Genovesi D, Vergaro G, Giorgetti A, Marzullo P, Scipioni M, Santarelli MF, et al. [18F]-Florbetaben PET/CT for differential diagnosis among cardiac immunoglobulin light chain, transthyretin amyloidosis, and mimicking conditions. JACC Cardiovasc Imaging. 2021;14:246-255. https://doi.org/10.1016/j.jcmg.2020.05.031.
Hotta M, Minamimoto R, Awaya T, Hiroe M, Okazaki O, Hiroi Y. Radionuclide imaging of cardiac amyloidosis and sarcoidosis: Roles and characteristics of various tracers. Radiographics. 2020;40:2029-2041. https://doi.org/10.1148/rg.2020200068.
Lee SP, Lee ES, Choi H, Im HJ, Koh Y, Lee MH, et al. 11C-Pittsburgh B PET imaging in cardiac amyloidosis. JACC Cardiovasc Imaging. 2015;8:50-59. https://doi.org/10.1016/j.jcmg.2014.09.018.
Elliott PM, Kindler H, Shah JS, Sachdev B, Rimoldi OE, Thaman R, et al. Coronary microvascular dysfunction in male patients with Anderson-Fabry disease and the effect of treatment with alpha galactosidase a. Heart. 2006;92:357-360. https://doi.org/10.1136/hrt.2004.054015.
Tomberli B, Cecchi F, Sciagrà R, Berti V, Lisi F, Torricelli F, et al. Coronary microvascular dysfunction is an early feature of cardiac involvement in patients with Anderson-Fabry disease. Eur J Heart Fail. 2013;15:1363-1373. https://doi.org/10.1093/eurjhf/hft104.
Treibel TA, Bandula S, Fontana M, White SK, Gilbertson JA, Herrey AS, et al. Extracellular volume quantification by dynamic equilibrium cardiac computed tomography in cardiac amyloidosis. J Cardiovasc Comput Tomogr. 2015;9:585-592. https://doi.org/10.1016/j.jcct.2015.07.001.
Nugent AW, Daubeney PE, Chondros P, Carlin JB, Cheung M, Wilkinson LC, et al. The epidemiology of childhood cardiomyopathy in Australia. N Engl J Med. 2003;348:1639-1646. https://doi.org/10.1056/NEJMoa021737.
Schwartz ML, Cox GF, Lin AE, Korson MS, Perez-Atayde A, Lacro RV, et al. Clinical approach to genetic cardiomyopathy in children. Circulation. 1996;94:2021-2038. https://doi.org/10.1161/01.cir.94.8.2021.
Rapezzi C, Merlini G, Quarta CC, Riva L, Longhi S, Leone O, et al. Systemic cardiac amyloidoses: Disease profiles and clinical courses of the 3 main types. Circulation. 2009;120:1203-1212. https://doi.org/10.1161/CIRCULATIONAHA.108.843334.
Rapezzi C, Arbustini E, Caforio AL, Charron P, Gimeno-Blanes J, Heliö T, et al. Diagnostic work-up in cardiomyopathies: Bridging the gap between clinical phenotypes and final diagnosis. A position statement from the ESC Working Group on Myocardial and Pericardial Diseases. Eur Heart J. 2013;34:1448-1458. https://doi.org/10.1093/eurheartj/ehs397.
van Rijsingen IA, Arbustini E, Elliott PM, Mogensen J, Hermans-van Ast JF, van der Kooi AJ, et al. Risk factors for malignant ventricular arrhythmias in lamin A/C mutation carriers: A European cohort study. J Am Coll Cardiol. 2012;59:493-500. https://doi.org/10.1016/j.jacc.2011.08.078.
Bates MG, Bourke JP, Giordano C, d'Amati G, Turnbull DM, Taylor RW. Cardiac involvement in mitochondrial DNA disease: Clinical spectrum, diagnosis, and management. Eur Heart J. 2012;33:3023-3033. https://doi.org/10.1093/eurheartj/ehs275.
Namdar M, Steffel J, Vidovic M, Brunckhorst CB, Holzmeister J, Lüscher TF, et al. Electrocardiographic changes in early recognition of Fabry disease. Heart. 2011;97:485-490. https://doi.org/10.1136/hrt.2010.211789.
Maron BJ, Roberts WC, Arad M, Haas TS, Spirito P, Wright GB, et al. Clinical outcome and phenotypic expression in LAMP2 cardiomyopathy. JAMA. 2009;301:1253-1259. https://doi.org/10.1001/jama.2009.371.
Vergaro G, Aimo A, Barison A, Genovesi D, Buda G, Passino C, et al. Keys to early diagnosis of cardiac amyloidosis: Red flags from clinical, laboratory and imaging findings. Eur J Prev Cardiol. 2020;27:1806-1815. https://doi.org/10.1177/2047487319877708.
Elliott P, McKenna WJ. Hypertrophic cardiomyopathy. Lancet. 2004;363:1881-1891. https://doi.org/10.1016/S0140-6736(04)16358-7.
Scully PR, Patel KP, Saberwal B, Klotz E, Augusto JB, Thornton GD, et al. Identifying cardiac amyloid in aortic stenosis: ECV quantification by CT in TAVR patients. JACC Cardiovasc Imaging. 2020;13:2177-2189. https://doi.org/10.1016/j.jcmg.2020.05.029.
Balciunaite G, Rimkus A, Zurauskas E, Zaremba T, Palionis D, Valeviciene N, et al. Transthyretin cardiac amyloidosis in aortic stenosis: Prevalence, diagnostic challenges, and clinical implications. Hellenic J Cardiol. 2020;61:92-98. https://doi.org/10.1016/j.hjc.2019.10.004.
Oda S, Kidoh M, Takashio S, Inoue T, Nagayama Y, Nakaura T, et al. Quantification of myocardial extracellular volume with planning computed tomography for transcatheter aortic valve replacement to identify occult cardiac amyloidosis in patients with severe aortic stenosis. Circ Cardiovasc Imaging. 2020;13:e010358. https://doi.org/10.1161/CIRCIMAGING.119.010358.
Linhart A, Kampmann C, Zamorano JL, Sunder-Plassmann G, Beck M, Mehta A, et al. Cardiac manifestations of Anderson-Fabry disease: Results from the international Fabry outcome survey. Eur Heart J. 2007;28:1228-1235. https://doi.org/10.1093/eurheartj/ehm153.
Linhart A, Elliott PM. The heart in Anderson-Fabry disease and other lysosomal storage disorders. Heart. 2007;93:528-535. https://doi.org/10.1136/hrt.2005.063818.
Kyle RA, Therneau TM, Rajkumar SV, Larson DR, Plevak MF, Offord JR, et al. Prevalence of monoclonal gammopathy of undetermined significance. N Engl J Med. 2006;354:1362-1369. https://doi.org/10.1056/NEJMoa054494.
Chan RH, Maron BJ, Olivotto I, Pencina MJ, Assenza GE, Haas T, et al. Prognostic value of quantitative contrast-enhanced cardiovascular magnetic resonance for the evaluation of sudden death risk in patients with hypertrophic cardiomyopathy. Circulation. 2014;130:484-495. https://doi.org/10.1161/CIRCULATIONAHA.113.007094.
Todiere G, Nugara C, Gentile G, Negri F, Bianco F, Falletta C, et al. Prognostic role of late gadolinium enhancement in patients with hypertrophic cardiomyopathy and low-to-intermediate sudden cardiac death risk score. Am J Cardiol. 2019;124:1286-1292. https://doi.org/10.1016/j.amjcard.2019.07.023.
Aquaro GD, Grigoratos C, Bracco A, Proclemer A, Todiere G, Martini N, et al. Late gadolinium enhancement-dispersion mapping: A new magnetic resonance imaging technique to assess prognosis in patients with hypertrophic cardiomyopathy and low-intermediate 5-year risk of sudden death. Circ Cardiovasc Imaging. 2020;13:e010489. https://doi.org/10.1161/CIRCIMAGING.120.010489.
Todiere G, Pisciella L, Barison A, Del Franco A, Zachara E, Piaggi P, et al. Abnormal T2-STIR magnetic resonance in hypertrophic cardiomyopathy: A marker of advanced disease and electrical myocardial instability. PLoS One. 2014;9:e111366. https://doi.org/10.1371/journal.pone.0111366.
Hen Y, Takara A, Iguchi N, Utanohara Y, Teraoka K, Takada K, et al. High signal intensity on T2-weighted cardiovascular magnetic resonance imaging predicts life-threatening arrhythmic events in hypertrophic cardiomyopathy patients. Circ J. 2018;82:1062-1069. https://doi.org/10.1253/circj.CJ-17-1235.
Todiere G, Aquaro GD, Piaggi P, Formisano F, Barison A, Masci PG, et al. Progression of myocardial fibrosis assessed with cardiac magnetic resonance in hypertrophic cardiomyopathy. J Am Coll Cardiol. 2012;60:922-929. https://doi.org/10.1016/j.jacc.2012.03.076.
van der Bijl P, Delgado V, Bax JJ. Sudden cardiac death: The role of imaging. Int J Cardiol. 2017;237:15-18. https://doi.org/10.1016/j.ijcard.2017.03.010.
Lee DZJ, Montazeri M, Bataiosu R, Hoss S, Adler A, Nguyen ET, et al. Clinical characteristics and prognostic importance of left ventricular apical aneurysms in hypertrophic cardiomyopathy. JACC Cardiovasc Imaging. 2022;15:1696-1711. https://doi.org/10.1016/j.jcmg.2022.03.029.
Olivotto I, Girolami F, Nistri S, Rossi A, Rega L, Garbini F, et al. The many faces of hypertrophic cardiomyopathy: From developmental biology to clinical practice. J Cardiovasc Transl Res. 2009;2:349-367. https://doi.org/10.1007/s12265-009-9137-2.
Buss SJ, Emami M, Mereles D, Korosoglou G, Kristen AV, Voss A, et al. Longitudinal left ventricular function for prediction of survival in systemic light-chain amyloidosis: Incremental value compared with clinical and biochemical markers. J Am Coll Cardiol. 2012;60:1067-1076. https://doi.org/10.1016/j.jacc.2012.04.043.
Barros-Gomes S, Williams B, Nhola LF, Grogan M, Maalouf JF, Dispenzieri A, et al. Prognosis of light chain amyloidosis with preserved LVEF: Added value of 2D speckle-tracking echocardiography to the current prognostic staging system. JACC Cardiovasc Imaging. 2017;10:398-407. https://doi.org/10.1016/j.jcmg.2016.04.008.
Chacko L, Martone R, Bandera F, Lane T, Martinez-Naharro A, Boldrini M, et al. Echocardiographic phenotype and prognosis in transthyretin cardiac amyloidosis. Eur Heart J. 2020;41:1439-1447. https://doi.org/10.1093/eurheartj/ehz905.
Huntjens PR, Zhang KW, Soyama Y, Karmpalioti M, Lenihan DJ, Gorcsan J 3rd. Prognostic utility of echocardiographic atrial and ventricular strain imaging in patients with cardiac amyloidosis. JACC Cardiovasc Imaging. 2021;14:1508-1519. https://doi.org/10.1016/j.jcmg.2021.01.016.
Martinez-Naharro A, Abdel-Gadir A, Treibel TA, Zumbo G, Knight DS, Rosmini S, et al. CMR-verified regression of cardiac AL amyloid after chemotherapy. JACC Cardiovasc Imaging. 2018;11:152-154. https://doi.org/10.1016/j.jcmg.2017.02.012.
Fontana M, Martinez-Naharro A, Chacko L, Rowczenio D, Gilbertson JA, Whelan CJ, et al. Reduction in CMR derived extracellular volume with patisiran indicates cardiac amyloid regression. JACC Cardiovasc Imaging. 2021;14:189-199. https://doi.org/10.1016/j.jcmg.2020.07.043.
Kotecha T, Martinez-Naharro A, Treibel TA, Francis R, Nordin S, Abdel-Gadir A, et al. Myocardial edema and prognosis in amyloidosis. J Am Coll Cardiol. 2018;71:2919-2931. https://doi.org/10.1016/j.jacc.2018.03.536.
Quarta CC, Solomon SD, Uraizee I, Kruger J, Longhi S, Ferlito M, et al. Left ventricular structure and function in transthyretin-related versus light-chain cardiac amyloidosis. Circulation. 2014;129:1840-1849. https://doi.org/10.1161/CIRCULATIONAHA.113.006242.
Mohty D, Boulogne C, Magne J, Varroud-Vial N, Martin S, Ettaif H, et al. Prognostic value of left atrial function in systemic light-chain amyloidosis: A cardiac magnetic resonance study. Eur Heart J Cardiovasc Imaging. 2016;17:961-969. https://doi.org/10.1093/ehjci/jew100.
Nochioka K, Quarta CC, Claggett B, Roca GQ, Rapezzi C, Falk RH, et al. Left atrial structure and function in cardiac amyloidosis. Eur Heart J Cardiovasc Imaging. 2017;18:1128-1137. https://doi.org/10.1093/ehjci/jex097.
Biagini E, Spirito P, Rocchi G, Ferlito M, Rosmini S, Lai F, et al. Prognostic implications of the Doppler restrictive filling pattern in hypertrophic cardiomyopathy. Am J Cardiol. 2009;104:1727-1731. https://doi.org/10.1016/j.amjcard.2009.07.057.
Berger SG, Sjaastad I, Stokke MK. Right ventricular involvement in hypertrophic cardiomyopathy: Evidence and implications from current literature. Scand Cardiovasc J. 2021;55:195-204. https://doi.org/10.1080/14017431.2021.1901979.
Gragnano F, Pelliccia F, Guarnaccia N, Niccoli G, De Rosa S, Piccolo R, et al. Alcohol septal ablation in patients with hypertrophic obstructive cardiomyopathy: A contemporary perspective. J Clin Med. 2023;12:2810. https://doi.org/10.3390/jcm12082810.
Schoendube FA, Klues HG, Reith S, Flachskampf FA, Hanrath P, Messmer BJ. Long-term clinical and echocardiographic follow-up after surgical correction of hypertrophic obstructive cardiomyopathy with extended myectomy and reconstruction of the subvalvular mitral apparatus. Circulation. 1995;92:II122-17. https://doi.org/10.1161/01.cir.92.9.122.
Olivotto I, Oreziak A, Barriales-Villa R, Abraham TP, Masri A, Garcia-Pavia P, et al. Mavacamten for treatment of symptomatic obstructive hypertrophic cardiomyopathy (EXPLORER-HCM): A randomised, double-blind, placebo-controlled, phase 3 trial. Lancet. 2020;396:759-769. https://doi.org/10.1016/S0140-6736(20)31792-X.
Saberi S, Cardim N, Yamani M, Schulz-Menger J, Li W, Florea V, et al. Mavacamten favorably impacts cardiac structure in obstructive hypertrophic cardiomyopathy: EXPLORER-HCM cardiac magnetic resonance substudy analysis. Circulation. 2021;143:606-608. https://doi.org/10.1161/CIRCULATIONAHA.120.052359.
Germain DP, Weidemann F, Abiose A, Patel MR, Cizmarik M, Cole JA, et al. Analysis of left ventricular mass in untreated men and in men treated with agalsidase-β: Data from the Fabry Registry. Genet Med. 2013;15:958-965. https://doi.org/10.1038/gim.2013.53.
Beer M, Weidemann F, Breunig F, Knoll A, Koeppe S, Machann W, et al. Impact of enzyme replacement therapy on cardiac morphology and function and late enhancement in Fabry's cardiomyopathy. Am J Cardiol. 2006;97:1515-1518. https://doi.org/10.1016/j.amjcard.2005.11.087.
Nordin S, Kozor R, Vijapurapu R, Augusto JB, Knott KD, Captur G, et al. Myocardial storage, inflammation, and cardiac phenotype in Fabry disease after one year of enzyme replacement therapy. Circ Cardiovasc Imaging. 2019;12:e009430. https://doi.org/10.1161/CIRCIMAGING.119.009430.
Aimo A, Buda G, Fontana M, Barison A, Vergaro G, Emdin M, et al. Therapies for cardiac light chain amyloidosis: An update. Int J Cardiol. 2018;271:152-160. https://doi.org/10.1016/j.ijcard.2018.05.018.
Cohen OC, Ismael A, Pawarova B, Manwani R, Ravichandran S, Law S, et al. Longitudinal strain is an independent predictor of survival and response to therapy in patients with systemic AL amyloidosis. Eur Heart J. 2022;43:333-341. https://doi.org/10.1093/eurheartj/ehab507.
Rettl R, Mann C, Duca F, Dachs TM, Binder C, Ligios LC, et al. Tafamidis treatment delays structural and functional changes of the left ventricle in patients with transthyretin amyloid cardiomyopathy. Eur Heart J Cardiovasc Imaging. 2022;23:767-780. https://doi.org/10.1093/ehjci/jeab226.
Doumas A, Zegkos T, Parcharidou D, Gossios T, Ntelios D, Chatzileontiadou S, et al. A novel quantitative method for assessing the therapeutic response to tafamidis therapy in patients with cardiac TTR amyloidosis. A preliminary report. Hellenic J Nucl Med. 2022;25:216-219. https://doi.org/10.1967/s002449912483.
فهرسة مساهمة: Keywords: Cardiomyopathy; Consensus document; Diagnosis; Hypertrophy; Imaging
تواريخ الأحداث: Date Created: 20230815 Date Completed: 20231023 Latest Revision: 20231023
رمز التحديث: 20231215
DOI: 10.1002/ejhf.2997
PMID: 37581253
قاعدة البيانات: MEDLINE
الوصف
تدمد:1879-0844
DOI:10.1002/ejhf.2997