دورية أكاديمية

Nonviral In Vivo Delivery of CRISPR-Cas9 Using Protein-Agnostic, High-Loading Porous Silicon and Polymer Nanoparticles.

التفاصيل البيبلوغرافية
العنوان: Nonviral In Vivo Delivery of CRISPR-Cas9 Using Protein-Agnostic, High-Loading Porous Silicon and Polymer Nanoparticles.
المؤلفون: Fletcher RB; Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37235-1631, United States., Stokes LD; Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37235-1631, United States., Kelly IB 3rd; Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37235-1631, United States., Henderson KM; Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37235-1631, United States., Vallecillo-Viejo IC; Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37235-1631, United States., Colazo JM; Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37235-1631, United States., Wong BV; Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37235-1631, United States., Yu F; Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37235-1631, United States., d'Arcy R; Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37235-1631, United States., Struthers MN; Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37235-1631, United States., Evans BC; Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37235-1631, United States., Ayers J; Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37235-1631, United States., Castanon M; Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37235-1631, United States., Weirich MJ; Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37235-1631, United States., Reilly SK; Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37235-1631, United States., Patel SS; Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37235-1631, United States., Ivanova YI; Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37235-1631, United States., Silvera Batista CA; Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235-1631, United States., Weiss SM; Department of Electrical Engineering, Vanderbilt University, Nashville, Tennessee 37235-1631, United States., Gersbach CA; Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States., Brunger JM; Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37235-1631, United States., Duvall CL; Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37235-1631, United States.
المصدر: ACS nano [ACS Nano] 2023 Sep 12; Vol. 17 (17), pp. 16412-16431. Date of Electronic Publication: 2023 Aug 15.
نوع المنشور: Journal Article; Research Support, N.I.H., Extramural
اللغة: English
بيانات الدورية: Publisher: American Chemical Society Country of Publication: United States NLM ID: 101313589 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1936-086X (Electronic) Linking ISSN: 19360851 NLM ISO Abbreviation: ACS Nano Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Washington D.C. : American Chemical Society
مواضيع طبية MeSH: CRISPR-Cas Systems*/genetics , Nanoparticles*, Mice ; Animals ; Silicon ; Porosity ; Polymers
مستخلص: The complexity of CRISPR machinery is a challenge to its application for nonviral in vivo therapeutic gene editing. Here, we demonstrate that proteins, regardless of size or charge, efficiently load into porous silicon nanoparticles (PSiNPs). Optimizing the loading strategy yields formulations that are ultrahigh loading─>40% cargo by volume─and highly active. Further tuning of a polymeric coating on the loaded PSiNPs yields nanocomposites that achieve colloidal stability under cryopreservation, endosome escape, and gene editing efficiencies twice that of the commercial standard Lipofectamine CRISPRMAX. In a mouse model of arthritis, PSiNPs edit cells in both the cartilage and synovium of knee joints, and achieve 60% reduction in expression of the therapeutically relevant MMP13 gene. Administered intramuscularly, they are active over a broad dose range, with the highest tested dose yielding nearly 100% muscle fiber editing at the injection site. The nanocomposite PSiNPs are also amenable to systemic delivery. Administered intravenously in a model that mimics muscular dystrophy, they edit sites of inflamed muscle. Collectively, the results demonstrate that the PSiNP nanocomposites are a versatile system that can achieve high loading of diverse cargoes and can be applied for gene editing in both local and systemic delivery applications.
References: Nat Rev Genet. 2022 May;23(5):265-280. (PMID: 34983972)
J Mater Chem B. 2014 Dec 7;2(45):7910-7917. (PMID: 32262080)
Adv Mater. 2018 Jun;30(24):e1703740. (PMID: 29534311)
ACS Nano. 2021 Sep 28;15(9):14475-14491. (PMID: 34409835)
ACS Nano. 2013 Oct 22;7(10):8870-80. (PMID: 24041122)
Nat Med. 2019 Mar;25(3):427-432. (PMID: 30778238)
RSC Adv. 2019 Oct 7;9(55):31895-31899. (PMID: 35530795)
Nat Biomed Eng. 2021 Sep;5(9):1069-1083. (PMID: 34413494)
Bioconjug Chem. 2022 Sep 21;33(9):1685-1697. (PMID: 36017941)
Nat Neurosci. 2010 Jan;13(1):133-40. (PMID: 20023653)
Mol Ther Nucleic Acids. 2017 Jun 16;7:378-386. (PMID: 28624213)
ACS Appl Mater Interfaces. 2019 Sep 18;11(37):33637-33649. (PMID: 31433156)
Nat Commun. 2013;4:2326. (PMID: 23933660)
Small. 2019 Jan;15(1):e1804332. (PMID: 30488562)
N Engl J Med. 2020 Nov 12;383(20):1920-1931. (PMID: 32663912)
Colloids Surf B Biointerfaces. 2020 Jun;190:110946. (PMID: 32172165)
Acta Biomater. 2020 Sep 15;114:358-368. (PMID: 32702530)
Biomater Sci. 2021 Jan 5;9(1):133-147. (PMID: 33135714)
Adv Mater. 2018 Jul;30(27):e1800512. (PMID: 29782671)
Trends Biotechnol. 2013 Jul;31(7):397-405. (PMID: 23664777)
J Mol Med (Berl). 2021 May;99(5):593-617. (PMID: 33594520)
Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2020 May;12(3):e1609. (PMID: 31797562)
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 May;85(5 Pt 1):051305. (PMID: 23004748)
Nat Rev Drug Discov. 2022 Aug;21(8):548-549. (PMID: 35794463)
Nat Commun. 2021 Dec 8;12(1):7101. (PMID: 34880218)
ACS Appl Mater Interfaces. 2020 Sep 2;12(35):39602-39611. (PMID: 32805967)
ACS Nano. 2021 Mar 23;15(3):5068-5076. (PMID: 33617224)
Science. 2016 Jan 22;351(6271):407-411. (PMID: 26721686)
Chemphyschem. 2018 Sep 5;19(17):2143-2147. (PMID: 29779258)
Nat Nanotechnol. 2020 Apr;15(4):313-320. (PMID: 32251383)
Annu Rev Biophys. 2017 May 22;46:505-529. (PMID: 28375731)
Int J Mol Sci. 2021 Sep 26;22(19):. (PMID: 34638696)
Adv Healthc Mater. 2017 Jan;6(2):. (PMID: 27869355)
Skelet Muscle. 2014 Aug 25;4:7. (PMID: 25157321)
Colloids Surf B Biointerfaces. 2018 Apr 1;164:291-298. (PMID: 29413608)
Genesis. 2007 Sep;45(9):593-605. (PMID: 17868096)
Adv Mater. 2019 Dec;31(49):e1903637. (PMID: 31566258)
Adv Mater. 2019 Aug;31(35):e1902952. (PMID: 31267590)
Sci Rep. 2023 Apr 27;13(1):6873. (PMID: 37105997)
Int J Mol Sci. 2021 Feb 09;22(4):. (PMID: 33572320)
Biotechnol Lett. 2016 Jun;38(6):919-29. (PMID: 26892225)
J Control Release. 2021 Aug 10;336:296-309. (PMID: 34174352)
Adv Mater. 2016 Sep;28(36):7984-7992. (PMID: 27383910)
Nucleic Acids Res. 2020 Dec 2;48(21):11958-11981. (PMID: 33170255)
Adv Mater. 2016 Sep;28(36):7962-7969. (PMID: 27383373)
Nat Mater. 2009 Apr;8(4):331-6. (PMID: 19234444)
J Control Release. 2017 Jun 10;255:12-26. (PMID: 28366646)
Annu Rev Chem Biomol Eng. 2016 Jun 7;7:637-62. (PMID: 27146557)
J Biotechnol. 2015 Aug 20;208:44-53. (PMID: 26003884)
Small. 2017 Jan;13(3):. (PMID: 28084695)
Mol Ther. 2021 Nov 3;29(11):3179-3191. (PMID: 33823301)
ACS Biomater Sci Eng. 2022 Oct 10;8(10):4123-4131. (PMID: 34468123)
Adv Mater. 2023 Feb;35(6):e2208018. (PMID: 36445243)
J Control Release. 2020 Aug 10;324:194-203. (PMID: 32380204)
J Nanobiotechnology. 2018 Apr 13;16(1):38. (PMID: 29653579)
Nat Commun. 2020 Jun 26;11(1):3232. (PMID: 32591530)
J Nanobiotechnology. 2021 Mar 31;19(1):95. (PMID: 33789675)
ACS Appl Mater Interfaces. 2018 Jan 31;10(4):3200-3209. (PMID: 29278488)
ACS Appl Mater Interfaces. 2021 Dec 8;13(48):56923-56930. (PMID: 34793118)
Mol Ther Methods Clin Dev. 2020 Sep 28;19:320-329. (PMID: 33145368)
Theranostics. 2022 Jun 21;12(11):4866-4878. (PMID: 35836795)
Biochemistry. 2023 Dec 19;62(24):3521-3532. (PMID: 36130724)
Biomaterials. 2023 Jun;297:122098. (PMID: 37031547)
ACS Appl Mater Interfaces. 2019 Jul 3;11(26):22993-23005. (PMID: 31252458)
Ann Rheum Dis. 2019 May;78(5):676-682. (PMID: 30842121)
Science. 2016 Jan 22;351(6271):403-7. (PMID: 26721684)
ACS Biomater Sci Eng. 2022 Oct 10;8(10):4140-4152. (PMID: 36210772)
ACS Nano. 2019 Feb 26;13(2):1136-1152. (PMID: 30629431)
N Engl J Med. 2020 Dec 17;383(25):2439-2450. (PMID: 33053279)
J Control Release. 2017 Mar 10;249:111-122. (PMID: 28159519)
Curr Protoc Protein Sci. 2010 Feb;Chapter 4:Unit 4.9. (PMID: 20155732)
Biomed Eng Lett. 2021 Jun 15;11(3):171-181. (PMID: 34350046)
معلومات مُعتمدة: R01 CA224241 United States CA NCI NIH HHS; R21 AR078636 United States AR NIAMS NIH HHS; R38 HL143619 United States HL NHLBI NIH HHS; U01 AI146356 United States AI NIAID NIH HHS
فهرسة مساهمة: Keywords: CRISPR; Duchenne’s muscular dystrophy; arthritis; porous silicon nanoparticles; ribonucleoprotein
المشرفين على المادة: Z4152N8IUI (Silicon)
0 (Polymers)
تواريخ الأحداث: Date Created: 20230815 Date Completed: 20230914 Latest Revision: 20240529
رمز التحديث: 20240529
مُعرف محوري في PubMed: PMC11129837
DOI: 10.1021/acsnano.2c12261
PMID: 37582231
قاعدة البيانات: MEDLINE
الوصف
تدمد:1936-086X
DOI:10.1021/acsnano.2c12261