دورية أكاديمية

How Does Oxymetazoline Change Nasal Aerodynamics and Symptomatology in Patients with Turbinate Hypertrophy?

التفاصيل البيبلوغرافية
العنوان: How Does Oxymetazoline Change Nasal Aerodynamics and Symptomatology in Patients with Turbinate Hypertrophy?
المؤلفون: Root ZT; Department of Otolaryngology - Head & Neck Surgery, The Ohio State University, Columbus, Ohio, USA., Lepley TJ; Department of Otolaryngology - Head & Neck Surgery, The Ohio State University, Columbus, Ohio, USA., Wu Z; Department of Otolaryngology - Head & Neck Surgery, The Ohio State University, Columbus, Ohio, USA., Chapman RJ; Department of Otolaryngology - Head & Neck Surgery, The Ohio State University, Columbus, Ohio, USA., Schneller AR; Department of Otolaryngology - Head & Neck Surgery, The Ohio State University, Columbus, Ohio, USA., Formanek VL; Department of Otolaryngology - Head & Neck Surgery, The Ohio State University, Columbus, Ohio, USA., Kelly KM; Department of Otolaryngology - Head & Neck Surgery, The Ohio State University, Columbus, Ohio, USA., Otto BA; Department of Otolaryngology - Head & Neck Surgery, The Ohio State University, Columbus, Ohio, USA., Zhao K; Department of Otolaryngology - Head & Neck Surgery, The Ohio State University, Columbus, Ohio, USA.
المصدر: The Laryngoscope [Laryngoscope] 2024 Mar; Vol. 134 (3), pp. 1100-1106. Date of Electronic Publication: 2023 Aug 17.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Wiley-Blackwell Country of Publication: United States NLM ID: 8607378 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1531-4995 (Electronic) Linking ISSN: 0023852X NLM ISO Abbreviation: Laryngoscope Subsets: MEDLINE
أسماء مطبوعة: Publication: <2009- >: Philadelphia, PA : Wiley-Blackwell
Original Publication: St. Louis, Mo. : [s.n., 1896-
مواضيع طبية MeSH: Nasal Obstruction*/drug therapy , Nasal Obstruction*/etiology , Paranasal Sinus Diseases*/drug therapy, Humans ; Oxymetazoline ; Turbinates/diagnostic imaging ; Prospective Studies ; Cohort Studies ; Hypertrophy
مستخلص: Objectives: Oxymetazoline relieves nasal obstructive symptoms via vasoconstriction, however, the changes in nasal structures and aerodynamics that impact symptoms the most remain unclear.
Methods: This prospective, longitudinal, and single blinded cohort study applied Computational Fluid Dynamic (CFD) modeling based on CT scans at baseline and post-oxymetazoline on 13 consecutive patients with chronic nasal obstruction secondary to inferior turbinate hypertrophy from a tertiary medical center. To account for placebo effect, a sham saline spray was administered with subject blindfolded prior to oxymetazoline, with 30 min rest in between. Nasal Obstruction Symptom Evaluation (NOSE) and unilateral Visual Analogue Scale (VAS) scores of nasal obstructions were collected at baseline, after sham, and 30 min after oxymetazoline.
Results: Both VAS and NOSE scores significantly improved from baseline to post-oxymetazoline (NOSE: 62.3 ± 12.4 to 31.5 ± 22.5, p < 0.01; VAS: 5.27 ± 2.63 to 3.85 ± 2.59, p < 0.05), but not significantly from baseline to post-sham. The anatomical effects of oxymetazoline were observed broadly throughout the entire length of the inferior and middle turbinates (p < 0.05). Among many variables that changed significantly post-oxymetazoline, only decreased nasal resistance (spearman r = 0.4, p < 0.05), increased regional flow rates (r = -0.3 to -0.5, p < 0.05) and mucosal cooling heat flux (r = -0.42, p < 0.01) in the inferior but not middle turbinate regions, and nasal valve Wall Shear Stress (WSS r = -0.43, p < 0.05) strongly correlated with symptom improvement.
Conclusion: Oxymetazoline broadly affects the inferior and middle turbinates, however, symptomatic improvement appears to be driven more by global nasal resistance and regional increases in airflow rate, mucosal cooling, and WSS, especially near the head of the inferior turbinate.
Level of Evidence: 3: Well-designed, prospective, single blinded cohort trial. Laryngoscope, 134:1100-1106, 2024.
(© 2023 The Authors. The Laryngoscope published by Wiley Periodicals LLC on behalf of The American Laryngological, Rhinological and Otological Society, Inc.)
References: Stewart M, Ferguson B, Fromer L. Epidemiology and burden of nasal congestion. International Journal of General Medicine. 2010;3:37-45. https://doi.org/10.2147/ijgm.s8077.
Passàli D, Lauriello M, Anselmi M, Bellussi L. Treatment of hypertrophy of the inferior turbinate: long-term results in 382 patients randomly assigned to therapy. Ann Otol Rhinol Laryngol. 1999;108(6):569-575.
Bhandarkar ND, Smith TL. Outcomes of surgery for inferior turbinate hypertrophy. Curr Opin Otolaryngol Head Neck Surg. 2010;18(1):49-53. https://doi.org/10.1097/MOO.0b013e328334d974.
Lee TS, Goyal P, Li C, Zhao K. Computational fluid dynamics to evaluate the effectiveness of inferior turbinate reduction techniques to improve nasal airflow. JAMA Facial Plast Surg. 2018;20(4):263-270. https://doi.org/10.1001/jamafacial.2017.2296.
Council on Drugs. Evaluation of a nasal decongestant. Oxymetazoline hydrochloride (Afrin). Jama. 1965;193(13):1115. https://doi.org/10.1001/jama.1965.03090130043013.
Bende M, Löth S. Vascular effects of topical oxymetazoline on human nasal mucosa. The Journal of Layngology & Otology. 1986;100(3):285-288. https://doi.org/10.1017/S0022215100099151.
Haenisch B, Walstab J, Herberhold S, et al. Alpha-adrenoceptor agonistic activity of oxymetazoline and xylometazoline. Fundam Clin Pharmacol. 2010;24(6):729-739. https://doi.org/10.1111/j.1472-8206.2009.00805.x.
Pritchard S, Glover M, Guthrie G, et al. Effectiveness of 0.05% oxymetazoline (Vicks Sinex micromist®) nasal spray in the treatment of objective nasal congestion demonstrated to 12 h post-administration by magnetic resonance imaging. Pulm Pharmacol Ther. 2014;27(1):121-126. https://doi.org/10.1016/j.pupt.2013.08.002.
Kishore A, Blake L, Wang C, Ba S, Gross G. Evaluating the effect of Sinex® (0.05% oxymetazoline) nasal spray on reduction of nasal congestion using computational fluid dynamics. J Biomech Eng. 2015;137(8):081011. https://doi.org/10.1115/1.4030825.
Stewart M, Witsell D, Smith T, Weaver E, Yueh B, Hannley M. Development and validation of the nasal obstruction symptom evaluation (NOSE) scale. Otolaryngology-Head and Neck Surgery. 2004;130(2):157-163. https://doi.org/10.1016/j.otohns.2003.09.016.
Zhao K, Blacker K, Luo Y, Bryant B, Jiang J. Perceiving nasal patency through mucosal cooling rather than air temperature or nasal resistance. Cohen NA. PLoS ONE. 2011;6(10):e24618. https://doi.org/10.1371/journal.pone.0024618.
Zhao K, Scherer P, Hajiloo S, Dalton P. Effect of anatomy on human nasal air flow and odorant transport patterns: implications for olfaction. Chem Senses. 2004;29(5):365-379. https://doi.org/10.1093/chemse/bjh033.
Zhao K, Jiang J. What is normal nasal airflow? A computational study of 22 healthy adults. International Forum of Allergy & Rhinology. 2014;4(6):435-446. https://doi.org/10.1002/alr.21319.
Li C, Jiang J, Dong H, Zhao K. Computational modeling and validation of human nasal airflow under various breathing conditions. J Biomech. 2017;64:59-68. https://doi.org/10.1016/j.jbiomech.2017.08.031.
Maza G, Li C, Krebs J, et al. Computational fluid dynamics after endoscopic endonasal skull base surgery-possible empty nose syndrome in the context of middle turbinate resection. International Forum of Allergy & Rhinology. 2019;9(2):204-211. https://doi.org/10.1002/alr.22236.
Zhao K, Malhotra P, Rosen D, Dalton P, Pribitkin EA. Computational fluid dynamics as surgical planning tool: a pilot study on middle turbinate resection: CFD AND NASAL SURGERY. Anat Rec. 2014;297(11):2187-2195. https://doi.org/10.1002/ar.23033.
Li C, Jiang J, Kim K, et al. Nasal structural and aerodynamic features that may benefit Normal olfactory sensitivity. Chem Senses. 2018;43(4):229-237. https://doi.org/10.1093/chemse/bjy013.
Zhao K, Jiang J, Blacker K, et al. Regional peak mucosal cooling predicts the perception of nasal patency. Laryngoscope. 2014;124(3):589-595. https://doi.org/10.1002/lary.24265.
Li C, Farag AA, Maza G, et al. Investigation of the abnormal nasal aerodynamics and trigeminal functions among empty nose syndrome patients. Int Forum Allergy Rhinol. 2018;8(3):444-452. https://doi.org/10.1002/alr.22045.
Lindemann J, Leiacker R, Rettinger G, Keck T. Nasal mucosal temperature during respiration. Clinical Otolaryngology & Allied Sciences. 2002;27(3):135-139. https://doi.org/10.1046/j.1365-2273.2002.00544.x.
Sullivan CD, Garcia GJM, Frank-Ito DO, Kimbell JS, Rhee JS. Perception of better nasal patency correlates with increased mucosal cooling after surgery for nasal obstruction. Otolaryngol Head Neck Surg. 2014;150(1):139-147. https://doi.org/10.1177/0194599813509776.
Shen J, Hur K, Li C, Zhao K, Leopold DA, Wrobel BB. Determinants and evaluation of nasal airflow perception. Facial Plast Surg. 2017;33(4):372-377. https://doi.org/10.1055/s-0037-1603788.
Malik J, Spector BM, Wu Z, et al. Evidence of nasal cooling and sensory impairments driving patient symptoms with septal deviation. Laryngoscope. 2021;14:509-517. https://doi.org/10.1002/lary.29673.
Wu Z, Krebs JP, Spector BM, Otto BA, Zhao K, Farag AA. Regional peak mucosal cooling predicts radiofrequency treatment outcomes of nasal valve obstruction. Laryngoscope. 2021;131(6):E1760-E1769. https://doi.org/10.1002/lary.29223.
معلومات مُعتمدة: n/a Bayer HealthCare
فهرسة مساهمة: Keywords: adrenoceptor agonist; computational fluid dynamics modeling; oxymetazoline; turbinate hypertrophy; turbinate reduction; α1 and α2-adrenogeneic
المشرفين على المادة: 8VLN5B44ZY (Oxymetazoline)
تواريخ الأحداث: Date Created: 20230817 Date Completed: 20240219 Latest Revision: 20240219
رمز التحديث: 20240219
DOI: 10.1002/lary.30968
PMID: 37589314
قاعدة البيانات: MEDLINE
الوصف
تدمد:1531-4995
DOI:10.1002/lary.30968