دورية أكاديمية

Disruption of Bioenergetics in the Intestine of Wistar Rats Caused by Hydrogen Sulfide and Thiosulfate: A Potential Mechanism of Chronic Hemorrhagic Diarrhea in Ethylmalonic Encephalopathy.

التفاصيل البيبلوغرافية
العنوان: Disruption of Bioenergetics in the Intestine of Wistar Rats Caused by Hydrogen Sulfide and Thiosulfate: A Potential Mechanism of Chronic Hemorrhagic Diarrhea in Ethylmalonic Encephalopathy.
المؤلفون: Frusciante MR; Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, 2600 Ramiro Barcelos Street-Attached, Porto Alegre, RS, 90035-003, Brazil., Signori MF; Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, 2600 Ramiro Barcelos Street-Attached, Porto Alegre, RS, 90035-003, Brazil., Parmeggiani B; Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, 2600 Ramiro Barcelos Street-Attached, Porto Alegre, RS, 90035-003, Brazil., Grings M; Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, 2600 Ramiro Barcelos Street-Attached, Porto Alegre, RS, 90035-003, Brazil., Pramio J; Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, 2600 Ramiro Barcelos Street-Attached, Porto Alegre, RS, 90035-003, Brazil., Cecatto C; Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, 2600 Ramiro Barcelos Street-Attached, Porto Alegre, RS, 90035-003, Brazil., de Andrade Silveira J; Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, 2600 Ramiro Barcelos Street-Attached, Porto Alegre, RS, 90035-003, Brazil., Aubin MR; Programa de Pós-Graduação em Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, 500 Sarmento Leite Street, Porto Alegre, RS, 90035-190, Brazil.; Laboratório de Células, Tecidos e Genes - Centro de Pesquisa Experimental, HCPA, Porto Alegre, RS, Brazil., Santos LA; Programa de Pós-Graduação em Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, 500 Sarmento Leite Street, Porto Alegre, RS, 90035-190, Brazil.; Laboratório de Células, Tecidos e Genes - Centro de Pesquisa Experimental, HCPA, Porto Alegre, RS, Brazil., Paz AH; Programa de Pós-Graduação em Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, 500 Sarmento Leite Street, Porto Alegre, RS, 90035-190, Brazil.; Laboratório de Células, Tecidos e Genes - Centro de Pesquisa Experimental, HCPA, Porto Alegre, RS, Brazil., Wajner M; Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, 2600 Ramiro Barcelos Street-Attached, Porto Alegre, RS, 90035-003, Brazil.; Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, 2600 Ramiro Barcelos Street-Attached, Porto Alegre, RS, 90035-003, Brazil.; Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, 2350 Ramiro Barcelos Street, Porto Alegre, RS, 90035-903, Brazil., Leipnitz G; Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, 2600 Ramiro Barcelos Street-Attached, Porto Alegre, RS, 90035-003, Brazil. guilhian@ufrgs.br.; Programa de Pós-Graduação em Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, 500 Sarmento Leite Street, Porto Alegre, RS, 90035-190, Brazil. guilhian@ufrgs.br.; Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, 2600 Ramiro Barcelos Street-Attached, Porto Alegre, RS, 90035-003, Brazil. guilhian@ufrgs.br.
المصدر: Cell biochemistry and biophysics [Cell Biochem Biophys] 2023 Dec; Vol. 81 (4), pp. 683-695. Date of Electronic Publication: 2023 Aug 17.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Humana Press Country of Publication: United States NLM ID: 9701934 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1559-0283 (Electronic) Linking ISSN: 10859195 NLM ISO Abbreviation: Cell Biochem Biophys Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Totowa, NJ : Humana Press, c1996-
مواضيع طبية MeSH: Hydrogen Sulfide*, Humans ; Rats ; Animals ; Rats, Wistar ; Thiosulfates/pharmacology ; Caco-2 Cells ; Energy Metabolism ; Sulfides ; Intestines ; Diarrhea ; Protein Isoforms/metabolism
مستخلص: Ethylmalonic encephalopathy (EE) is a severe inherited metabolic disorder that causes tissue accumulation of hydrogen sulfide (sulfide) and thiosulfate in patients. Although symptoms are predominantly neurological, chronic hemorrhagic diarrhea associated with intestinal mucosa abnormalities is also commonly observed. Considering that the pathophysiology of intestinal alterations in EE is virtually unknown and that sulfide and thiosulfate are highly reactive molecules, the effects of these metabolites were investigated on bioenergetic production and transfer in the intestine of rats. We observed that sulfide reduced NADH- and FADH 2 -linked mitochondrial respiration in the intestine, which was avoided by reduced glutathione (GSH) but not by melatonin. Thiosulfate did not change respiration. Moreover, both metabolites markedly reduced the activity of total, cytosolic and mitochondrial isoforms of creatine kinase (CK) in rat intestine. Noteworthy, the addition of GSH but not melatonin, apocynin, and Trolox (hydrosoluble vitamin E) prevented the change in the activities of total CK and its isoforms caused by sulfide and thiosulfate, suggesting a direct protein modification on CK structure by these metabolites. Sulfide further increased thiol content in the intestine, suggesting a modulation in the redox state of these groups. Finally, sulfide and thiosulfate decreased the viability of Caco-2 intestinal cells. Our data suggest that bioenergetic impairment caused by sulfide and thiosulfate is a mechanism involved in the gastrointestinal abnormalities found in EE.
(© 2023. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.)
References: Tiranti, V., Viscomi, C., Hildebrandt, T., Di Meo, I., Mineri, R., Tiveron, C., Levitt, M. D., Prelle, A., Fagiolari, G., Rimoldi, M., & Zeviani, M. (2009). Loss of ETHE1, a mitochondrial dioxygenase, causes fatal sulfide toxicity in ethylmalonic encephalopathy. Nature Medicine, 15(2), 220–225.
Pettinati, I., Brem, J., McDonough, M. A., & Schofield, C. J. (2015). Crystal structure of human persulfide dioxygenase: structural basis of ethylmalonic encephalopathy. Human Molecular Genetics, 24(9), 2458–2469. (PMID: 255961854383860)
Kohl, J. B., Mellis, A. T., & Schwarz, G. (2019). Homeostatic impact of sulfite and hydrogen sulfide on cysteine catabolism. British Journal of Pharmacology, 176, 554–570. (PMID: 30088670)
Di Meo, I., Lamperti, C., & Tiranti, V. (2015). Mitochondrial diseases caused by toxic compound accumulation: from etiopathology to therapeutic approaches. EMBO Molecular Medicine, 7(10), 1257–1266. (PMID: 261949124604682)
Rahman, S. (2013). Gastrointestinal and hepatic manifestations of mitochondrial disorders. Journal of Inherited Metabolic Disease, 36(4), 659–673. (PMID: 23674168)
Zhou, G. P., Qu, W., Zhu, Z. J., Sun, L. Y., Wei, L., Zeng, Z. G., & Liu, Y. (2020). Compromised therapeutic value of pediatric liver transplantation in ethylmalonic encephalopathy: a case report. World Jouurnal of Gastroenterology, 26(40), 6295–6303.
Di Meo, I., Auricchio, A., Lamperti, C., Burlina, A., Viscomi, C., & Zeviani, M. (2012). Effective AAV-mediated gene therapy in a mouse model of ethylmalonic encephalopathy. EMBO Molecular Medicine, 4(9), 1008–1014. (PMID: 229038873491831)
Blau, N. et al. (2006) Physician’s guide to the treatment and follow-up of metabolic diseases. Berlin: Springer, Print, pp.157–163.
Roediger, W. E., Moore, J., & Babidge, W. (1987). Colonic sulfide in pathogenesis and treatment of ulcerative colitis. Digestive Diseases and Sciences, 42(8), 1571–1579.
Viscomi, C., Burlina, B. A., Dweikat, I., Savoiardo, M., Lamperti, C., Hildebrandt, T., Tiranti, V., & Zeviani, M. (2010). Combined treatment with oral metronidazole and N-acetylcysteine is effective in ethylmalonic encephalopathy. Nature Medicine, 16(8), 869–871. (PMID: 20657580)
Dione, N., Khelaifia, S., Lagier, J. C., & Raoult, D. (2015). The aerobic activity of metronidazole against anaerobic bacteria. International Journal of Antimicrobial Agents, 45(5), 537–540. (PMID: 25813393)
Ramirez, O., & Jimenez, E. (2000). Opposite transitions of chick brain catalytically active cytosolic creatine kinase isoenzymes during development. International Journal of Developmental Neuroscience, 18, 815–823. (PMID: 11154851)
Rosenthal, R. E., Hamud, F., Fiskum, G., Varghese, P. J., & Sharpe, S. (1987). Cerebral ischemia and reperfusion - prevention of brain mitochondrial injury by lidoflazine. Journal of Cerebral Blood Flow and Metabolism, 7, 752–758. (PMID: 3693430)
Evelson, P., Travacio, M., Repetto, M., Escobar, J., Llesuy, S., & Lissi, E. A. (2001). Evaluation of total reactive antioxidant potential (TRAP) of tissue homogenates and their cytosols. Archives of Biochemistry and Biophysics, 388, 261–266. (PMID: 11368163)
Grings, M., Parmeggiani, B., Moura, A. P., de Moura Alvorcem, L., Wyse, A. T. S., Wajner, M., & Leipnitz, G. (2018). Evidence that Thiosulfate Inhibits Creatine Kinase Activity in Rat Striatum via Thiol Group Oxidation. Neurotoxicity Research, 34(3), 693–705. (PMID: 30056533)
Cardoso, G. M. F., Pletsch, J. T., Parmeggiani, B., Grings, M., Glanzel, N. M., Bobermin, L. D., Amaral, A. U., Wajner, M., & Leipnitz, G. (2017). Bioenergetics dysfunction, mitochondrial permeability transition pore opening and lipid peroxidation induced by hydrogen sulfide as relevant pathomechanisms underlying the neurological dysfunction characteristic of ethylmalonic encephalopathy. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 1863(9), 2192–2201. (PMID: 28624490)
Cecatto, C., Amaral, A. U., da Silva, J. C., Wajner, A., Schimit, M. O. V., da Silva, L. H. R., Wajner, S. M., Zanatta, Â., Castilho, R. F., & Wajner, M. (2018). Metabolite accumulation in VLCAD deficiency markedly disrupts mitochondrial bioenergetics and Ca2+ homeostasis in the heart. FEBS Journal, 285(8), 1437–1455. (PMID: 29476646)
Hughes, B. P. (1962). A method for estimation of serum creatine kinase and its use in comparing creatine kinase and aldolase activity in normal and pathological sera. Clinica Chimica Acta, 7, 597–603.
Browne, R. W., & Armstrong, D. (1998). Reduced glutathione and glutathione disulfide. Methods in Molecular Biology, 108, 347–352. (PMID: 9921543)
Aksenov, M. Y., & Markesbery, W. R. (2001). Changes in thiol content and expression of glutathione redox system genes in the hippocampus and cerebellum in Alzheimer’s disease. Neuroscience Letters, 302(2-3), 141–145. (PMID: 11290407)
Hohnholt, M. C., Blumrich, E. M., & Dringen, R. (2015). Multiassay analysis of the toxic potential of hydrogen peroxide on cultured neurons. Journal of Neuroscience Research, 93(7), 1127–1137. (PMID: 25354694)
Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry, 193, 265–275. (PMID: 14907713)
de Moura Alvorcem, L., Britto, R., Cecatto, C., Roginski, A. C., Rohden, F., Nathali Scholl, J., Guma, F. C. R., Figueiró, F., Amaral, A. U., Zanatta, G., Seminotti, B., Wajner, M., & Leipnitz, G. (2021). Ethylmalonic acid impairs bioenergetics by disturbing succinate and glutamate oxidation and induces mitochondrial permeability transition pore opening in rat cerebellum. Journal of Neurochemistry, 158(2), 262–28. (PMID: 33837559)
Grings, M., Wajner, M., & Leipnitz, G. (2022). Mitochondrial dysfunction and redox homeostasis impairment as pathomechanisms of brain damage in ethylmalonic encephalopathy: insights from animal and human studies. Cellular and Molecular Neurobiology, 42(3), 565–575. (PMID: 33034777)
Grings, M., Seminotti, B., Karunanidhi, A., Ghaloul-Gonzalez, L., Mohsen, A. W., Wipf, P., Palmfeldt, J., Vockley, J., & Leipnitz, G. (2019). ETHE1 and MOCS1 deficiencies: Disruption of mitochondrial bioenergetics, dynamics, redox homeostasis and endoplasmic reticulum-mitochondria crosstalk in patient fibroblasts. Scientific Report, 9(1), 12651–1263.
Jia, J., Wang, Z., Zhang, M., Huang, C., Song, Y., Xu, F., Zhang, J., Li, J., He, M., Li, Y., Ao, G., Hong, C., Cao, Y., Chin, Y. E., Hua, Z. C., & Cheng, J. (2020). SQR mediates therapeutic effects of H2S by targeting mitochondrial electron transport to induce mitochondrial uncoupling. Science Advances, 6(35), eaaz5752. (PMID: 329236207449675)
Miller, E., Morel, A., Saso, L., & Saluk, J. (2015). Melatonin redox activity. Its potential clinical applications in neurodegenerative disorders. Current Topics in Medicinal Chemistry, 15(2), 163–169. (PMID: 25985818)
Puurand, M., Tepp, K., Klepinin, A., Klepinina, L., Shevchuk, I., & Kaambre, T. (2018). Intracellular energy-transfer networks and high-resolution respirometry: a convenient approach for studying their function. International Journal of Molecular Sciences, 19, 2933–2951. (PMID: 302616636213097)
Colgan, S. P., Curtis, V. F., Lanis, J. M., & Glover, L. E. (2015). Metabolic regulation of intestinal epithelial barrier during inflammation. Tissue Barriers, 3, 1–2.
Ziello, J. E., Jovin, I. S., & Huanga, Y. (2007). Hypoxia-inducible factor (HIF)-1 regulatory pathway and its potential for therapeutic intervention in malignancy and ischemia. Yale Journal of Biology and Medicine, 80(2), 51–60. (PMID: 181609902140184)
Glover, L. E., Bowers, B. E., Saeedi, B., Ehrentraut, S. F., Campbell, E. L., Bayless, A. J., Dobrinskikh, E., Kendrick, A. A., Kelly, C. J., Burgess, A., Miller, L., Kominsky, D. J., Jedlicka, P., & Colgan, S. P. (2013). Control of creatine metabolism by HIF is an endogenous mechanism of barrier regulation in colitis. Proceedings of the National Academy of Sciences of the United States of America, 49, 19820–19825.
Libiad, M., Vitvitsky, V., Bostelaar, T., Bak, D. W., Lee, H. J., Sakamoto, N., Fearon, E., Lyssiotis, C. A., Weerapana, E., & Banerjee, R. (2019). Hydrogen sulfide perturbs mitochondrial bioenergetics and triggers metabolic reprogramming in colon cells. Journal of Biological Chemistry, 294(32), 12077–12090. (PMID: 312135296690701)
Shen, S., Vagner, S., & Robert, C. (2020). Persistent cancer cells: the deadly survivors. Cell, 183(4), 860–874. (PMID: 33186528)
Hansen, R. E., Roth, D., & Winther, J. R. (2009). Quantifying the global cellular thiol-disulfide status. Proceedings of the National Academy of Sciences of the United States of America, 106(2), 422–427. (PMID: 191221432626718)
Thomas, J. A., Poland, B., & Honzatko, R. (1995). Protein sulfhydryls and their role in the antioxidant function of protein S-thiolation. Archives of Biochemistry and Biophysics, 319(1), 1–9. (PMID: 7771771)
Kumar, R., & Banerjee, R. (2021). Regulation of the redox metabolome and thiol proteome by hydrogen sulfide. Critical Reviews in Biochemistry and Molecular Biology, 56(3), 221–235. (PMID: 337221218136436)
Gao, X. H., Li, L., Parisien, M., Wu, J., Bederman, I., Gao, Z., Krokowski, D., Chirieleison, S. M., Abbott, D., Wang, B., Arvan, P., Cameron, M., Chance, M., Willard, B., & Hatzoglou, M. (2020). Discovery of a redox thiol switch: implications for cellular energy metabolism. Molecular and Cellular Proteomics, 5, 852–870.
Nicholls, P., Marshall, D. C., Cooper, C. E., & Wilson, M. T. (2013). Sulfide inhibition of and metabolism by cytochrome c oxidase. Biochemical Society Transactions, 41(5), 1312–1316. (PMID: 24059525)
Reddy, S., Jones, A. D., Cross, C. E., Wong, P. S., & Van Der Vliet, A. (2000). Inactivation of creatine kinase by S-glutathionylation of the active-site cysteine residue. Biochemical Journal, 347(Pt 3), 821–827. (PMID: 107691881221021)
Grings, M., Moura, A. P., Parmeggiani, B., Marcowich, G. F., Amaral, A. U., Wyse, A. T. S., Wajner, M., & Leipnitz, G. (2013). Disturbance of brain energy and redox homeostasis provoked by sulfite and thiosulfate: potential pathomechanisms involved in the neuropathology of sulfite oxidase deficiency. Gene, 531(2), 191–198. (PMID: 24035933)
Jiang, J., Chan, A., Ali, S., Saha, A., Haushalter, K. J., Lam, W. L., Glasheen, M., Parker, J., Brenner, M., Mahon, S. B., Patel, H. H., Ambasudhan, R., Lipton, S. A., Pilz, R. B., & Boss, G. R. (2016). Hydrogen sulfide-mechanisms of toxicity and development of an antidote. Scientific Reports, 6, 20831–22840. (PMID: 268772094753484)
Boyer, M., Sowa, M., Di Meo, I., Eftekharian, S., Steenari, M. R., Tiranti, V., & Abdenur, J. E. (2018). Response to medical and a novel dietary treatment in newborn screen identified patients with ethylmalonic encephalopathy. Molecular Genetics and Metabolism, 124(1), 57–63. (PMID: 29526615)
معلومات مُعتمدة: # 402440/2021-8 Conselho Nacional de Desenvolvimento Científico e Tecnológico; # 16/2551-0000465-0 Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul; # 465671/2014-4 Instituto Nacional de Ciência e Tecnologia em Excitotoxicidade e Neuroproteção
فهرسة مساهمة: Keywords: Creatine kinase; Ethylmalonic encephalopathy; Hydrogen sulfide; Intestine; Mitochondrial respiration; Thiosulfate
المشرفين على المادة: YY9FVM7NSN (Hydrogen Sulfide)
0 (Thiosulfates)
0 (Sulfides)
0 (Protein Isoforms)
SCR Disease Name: Ethylmalonic encephalopathy
تواريخ الأحداث: Date Created: 20230817 Date Completed: 20231030 Latest Revision: 20231030
رمز التحديث: 20231215
DOI: 10.1007/s12013-023-01161-0
PMID: 37589888
قاعدة البيانات: MEDLINE
الوصف
تدمد:1559-0283
DOI:10.1007/s12013-023-01161-0