دورية أكاديمية

Data Base similarity (DBsimilarity) of natural products to aid compound identification on MS and NMR pipelines, similarity networking, and more.

التفاصيل البيبلوغرافية
العنوان: Data Base similarity (DBsimilarity) of natural products to aid compound identification on MS and NMR pipelines, similarity networking, and more.
المؤلفون: Borges RM; Instituto de Pesquisas de Produtos Naturais Walter Mors, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil., de Assis Ferreira G; Instituto de Pesquisas de Produtos Naturais Walter Mors, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil., Campos MM; Instituto de Pesquisas de Produtos Naturais Walter Mors, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil., Teixeira AM; Instituto de Pesquisas de Produtos Naturais Walter Mors, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil., das Neves Costa F; Instituto de Pesquisas de Produtos Naturais Walter Mors, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil., Chagas FO; Instituto de Pesquisas de Produtos Naturais Walter Mors, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
المصدر: Phytochemical analysis : PCA [Phytochem Anal] 2024 Jan; Vol. 35 (1), pp. 93-101. Date of Electronic Publication: 2023 Aug 17.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Wiley Country of Publication: England NLM ID: 9200492 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1099-1565 (Electronic) Linking ISSN: 09580344 NLM ISO Abbreviation: Phytochem Anal Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Chichester, Sussex, UK : Wiley, c1990-
مواضيع طبية MeSH: Biological Products*/chemistry, Magnetic Resonance Spectroscopy/methods ; Databases, Factual ; Plant Extracts/chemistry ; Anti-Bacterial Agents
مستخلص: Introduction: We developed Data Base similarity (DBsimilarity), a user-friendly tool designed to organize structure databases into similarity networks, with the goal of facilitating the visualization of information primarily for natural product chemists who may not have coding experience.
Method: DBsimilarity, written in Jupyter Notebooks, converts Structure Data File (SDF) files into Comma-Separated Values (CSV) files, adds chemoinformatics data, constructs an MZMine custom database file and an NMRfilter candidate list of compounds for rapid dereplication of MS and 2D NMR data, calculates similarities between compounds, and constructs CSV files formatted into similarity networks for Cytoscape.
Results: The Lotus database was used as a source for Ginkgo biloba compounds, and DBsimilarity was used to create similarity networks including NPClassifier classification to indicate biosynthesis pathways. Subsequently, a database of validated antibiotics from natural products was combined with the G. biloba compounds to identify promising compounds. The presence of 11 compounds in both datasets points to possible antibiotic properties of G. biloba, and 122 compounds similar to these known antibiotics were highlighted. Next, DBsimilarity was used to filter the NPAtlas database (selecting only those with MIBiG reference) to identify potential antibacterial compounds using the ChEMBL database as a reference. It was possible to promptly identify five compounds found in both databases and 167 others worthy of further investigation.
Conclusion: Chemical and biological properties are determined by molecular structures. DBsimilarity enables the creation of interactive similarity networks using Cytoscape. It is also in line with a recent review that highlights poor biological plausibility and unrealistic chromatographic behaviors as significant sources of errors in compound identification.
(© 2023 John Wiley & Sons Ltd.)
References: Mohimani H, Gurevich A, Mikheenko A, et al. Dereplication of peptidic natural products through database search of mass spectra. Nat Chem Biol. 2017;13(1):30-37. doi:10.1038/nchembio.2219.
Klitgaard A, Iversen A, Andersen MR, Larsen TO, Frisvad JC, Nielsen KF. Aggressive dereplication using UHPLC-DAD-QTOF: screening extracts for up to 3000 fungal secondary metabolites. Anal Bioanal Chem. 2014;406(7):1933-1943. doi:10.1007/s00216-013-7582-x.
Quinlan ZA, Koester I, Aron AT, et al. ConCISE: consensus annotation propagation of ion features in untargeted tandem mass spectrometry combining molecular networking and in silico metabolite structure prediction. Metabolites. 2022;12(12):1275. doi:10.3390/metabo12121275.
Olivon F, Allard PM, Koval A, et al. Bioactive natural products prioritization using massive multi-informational molecular networks. ACS Chem Biol. 2017;12(10):2644-2651. doi:10.1021/acschembio.7b00413.
Wishart DS, Sayeeda Z, Budinski Z, et al. NP-MRD: the natural products magnetic resonance database. Nucleic Acids Res. 2021;50(D1):D665-D677. doi:10.1093/nar/gkab1052.
Kuhn S, Colreavy-Donnelly S, de Andrade Silva Quaresma LE, de Andrade Silva Quaresma E, Borges RM. Applying NMR compound identification using NMRfilter to match predicted to experimental data. Metabolomics. 2020;16(12):123. doi:10.1007/s11306-020-01748-1.
Flores-Bocanegra L, Al Subeh ZY, Egan JM, et al. Dereplication of fungal metabolites by NMR-based compound networking using MADByTE. J Nat Prod. 2022;85(3):614-624. doi:10.1021/acs.jnatprod.1c00841.
Bakiri A, Hubert J, Reynaud R, et al. Computer-aided (13)C NMR chemical profiling of crude natural extracts without fractionation. J Nat Prod. 2017;80(5):1387-1396. doi:10.1021/acs.jnatprod.6b01063.
Kuhn S, Colreavy-Donnelly S, Santana de Souza J, Borges RM. An integrated approach for mixture analysis using MS and NMR techniques. Faraday Discuss. 2019;218:339-353. doi:10.1039/C8FD00227D.
Borges RM, Colby SM, Das S, et al. Quantum chemistry calculations for metabolomics. Chem Rev. 2021;121(10):5633-5670. doi:10.1021/acs.chemrev.0c00901.
Kuhn S, Cobas C, Barba A, Colreavy-Donnelly S, Caraffini F, Borges RM. Direct deduction of chemical class from NMR spectra. J Magn Reson. 2023;348:107381. doi:10.1016/j.jmr.2023.107381.
Rutz A, Sorokina M, Galgonek J, et al. The LOTUS initiative for open knowledge management in natural products research. Elife. 2022;11:e70780. doi:10.7554/eLife.70780.
Alshahrani MY, Alshahrani KM, Tasleem M, et al. Computational screening of natural compounds for identification of potential anti-cancer agents targeting MCM7 protein. Molecules. 2021;26(19):5878. doi:10.3390/molecules26195878.
Orosz A, Heberger K, Racz A. Comparison of descriptor- and fingerprint sets in machine learning models for ADME-Tox targets. Front Chem. 2022;10:852893. doi:10.3389/fchem.2022.852893.
Pluskal T, Castillo S, Villar-Briones A, Orešič M. MZmine2: modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinformatics. 2010;11(1):395-406. doi:10.1186/1471-2105-11-395.
Shannon P, Markiel A, Ozier O, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13(11):2498-2504. doi:10.1101/gr.1239303.
Nothias LF, Petras D, Schmid R, et al. Feature-based molecular networking in the GNPS analysis environment. Nat Methods. 2020;17(9):905-908. doi:10.1038/s41592-020-0933-6.
Harris CR, Millman KJ, van der Walt SJ, et al. Array programming with NumPy. Nature. 2020;585(7825):357-362. doi:10.1038/s41586-020-2649-2.
Theodoridis G, Gika H, Raftery D, Goodacre R, Plumb RS, Wilson ID. Ensuring fact-based metabolite identification in liquid chromatography-mass spectrometry-based metabolomics. Anal Chem. 2023;95(8):3909-3916. doi:10.1021/acs.analchem.2c05192.
van Santen JA, Jacob G, Singh AL, et al. The natural products atlas: an open access knowledge base for microbial natural products discovery. ACS Cent Sci. 2019;5(11):1824-1833. doi:10.1021/acscentsci.9b00806.
Kim HW, Wang M, Leber CA, et al. NPClassifier: a deep neural network-based structural classification tool for natural products. J Nat Prod. 2021;84(11):2795-2807. doi:10.1021/acs.jnatprod.1c00399.
Sumner LW, Amberg A, Barrett D, et al. Proposed minimum reporting standards for chemical analysis chemical analysis working group (CAWG) metabolomics standards initiative (MSI). Metabolomics. 2007;3(3):211-221. doi:10.1007/s11306-007-0082-2.
Hansen AL, Kupce ER, Li DW, Bruschweiler-Li L, Wang C, Bruschweiler R. 2D NMR-based metabolomics with HSQC/TOCSY NOAH supersequences. Anal Chem. 2021;93(15):6112-6119. doi:10.1021/acs.analchem.0c05205.
Reher R, Kim HW, Zhang C, et al. A convolutional neural network-based approach for the rapid annotation of molecularly diverse natural products. J am Chem Soc. 2020;142(9):4114-4120. doi:10.1021/jacs.9b13786.
Lopes AG, Borges RM, Kuhn S, Garrett R, Costa FN. Combining high-speed countercurrent chromatography three-phase solvent system with electrospray ionization-mass spectrometry and nuclear magnetic resonance to profile the unconventional food plant Syzygium malaccense. J Chromatogr A. 2022;1677:463211. doi:10.1016/j.chroma.2022.463211.
Morgan HL. The generation of a unique machine description for chemical structures-a technique developed at chemical abstracts service. J Chem Doc. 1965;5(2):107-113. doi:10.1021/c160017a018.
Porras G, Chassagne F, Lyles JT, et al. Ethnobotany and the role of plant natural products in antibiotic drug discovery. Chem Rev. 2021;121(6):3495-3560. doi:10.1021/acs.chemrev.0c00922.
Ražná K, Sawinska Z, Ivanišová E, et al. Properties of Ginkgo biloba L.: antioxidant characterization, antimicrobial activities, and genomic MicroRNA based marker fingerprints. Int J Mol Sci. 2020;21(9):21. doi:10.3390/ijms21093087.
Matsuno K, Yamada Y, Lee C-K, Nihira T. Identification by gene deletion analysis of barB as a negative regulator controlling an early process of virginiamycin biosynthesis in Streptomyces virginiae. Arch Microbiol. 2004;181(1):52-59. doi:10.1007/s00203-003-0625-5.
García M-D, Argüelles J-C. Trehalase inhibition by validamycin A may be a promising target to design new fungicides and insecticides. Pest Manag Sci. 2021;77(9):3832-3835. doi:10.1002/ps.6382.
Zou W, Wang X-H, Zhang K-P, et al. Study on production enhancement of validamycin A using online capacitance measurement coupled with 1H NMR spectroscopy analysis in a plant-scale bioreactor. Process Biochem. 2018;65:28-36. doi:10.1016/j.procbio.2017.11.002.
Van Arnam EB, Ruzzini AC, Sit CS, et al. Selvamicin, an atypical antifungal polyene from two alternative genomic contexts. Proc Natl Acad Sci. 2016;113(46):12940-12945. doi:10.1073/pnas.1613285113.
Sutter VL, Finegold SM. Rosamicin: in vitro activity against anaerobes and comparison with erythromycin. Antimicrob Agents Chemother. 1976;9(2):350-351. doi:10.1128/AAC.9.2.350.
Cho MK, Lee BT, Kim HU, Oh M-K. Systems metabolic engineering of Streptomyces venezuelae for the enhanced production of pikromycin. Biotechnol Bioeng. 2022;119(8):2250-2260. doi:10.1002/bit.28114.
Obszynski J, Loidon H, Blanc A, Weibel JM, Pale P. Targeted modifications of neomycin and paromomycin: towards resistance-free antibiotics? Bioorg Chem. 2022;126:105824. doi:10.1016/j.bioorg.2022.105824.
Kakavas SJ, Katz L, Stassi D. Identification and characterization of the niddamycin polyketide synthase genes from Streptomyces caelestis. J Bacteriol. 1997;179(23):7515-7522. doi:10.1128/jb.179.23.7515-7522.1997.
Choi GG, Bae MS, Ahn CY, Oh HM. Induction of axenic culture of Arthrospira (Spirulina) platensis based on antibiotic sensitivity of contaminating bacteria. Biotechnol Lett. 2008;30(1):87-92. doi:10.1007/s10529-007-9523-2.
Graziani EI, Cane DE, Betlach MC, Kealey JT, McDaniel R. Macrolide biosynthesis: a single cytochrome P450, PicK, is responsible for the hydroxylations that generate methymycin, neomethymycin, and picromycin in Streptomyces venezuelae. Bioorg Med Chem Lett. 1998;8(22):3117-3120. doi:10.1016/S0960-894X(98)00553-8.
Edelstein PH, Pasiecznik KA, Yasui VK, Meyer RD. Susceptibility of Legionella spp. to mycinamicin I and II and other macrolide antibiotics: effects of media composition and origin of organisms. Antimicrob Agents Chemother. 1982;22(1):90-93. doi:10.1128/AAC.22.1.90.
Weber W, Zähner H, Siebers J, Schröder K, Zeeck A. Stoffwechselprodukte von Mikroorganismen. 175. Mitteilung. Tetracenomycin C. Arch Microbiol. 1979;121(2):111-116. doi:10.1007/BF00689973.
Dias E, Oliveira M, Jones-Dias D, et al. Assessing the antibiotic susceptibility of freshwater cyanobacteria spp. Front Microbiol. 2015;6:799. doi:10.3389/fmicb.2015.00799.
Brittain DC. Erythromycin. Med Clin North am. 1987;71(6):1147-1154. doi:10.1016/S0025-7125(16)30802-1.
معلومات مُعتمدة: 0001 Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq); 001 Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES); 210.489/2019APQ-1 Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ)
فهرسة مساهمة: Keywords: chemoinformatics; dereplication; metabolomics; natural products; structure similarity
المشرفين على المادة: 0 (Biological Products)
0 (Plant Extracts)
0 (Anti-Bacterial Agents)
تواريخ الأحداث: Date Created: 20230818 Date Completed: 20240109 Latest Revision: 20240109
رمز التحديث: 20240109
DOI: 10.1002/pca.3277
PMID: 37592443
قاعدة البيانات: MEDLINE
الوصف
تدمد:1099-1565
DOI:10.1002/pca.3277