دورية أكاديمية

Structural and immunohistochemical characterization of pancreas of Molly fish (Poecilia sphenops), with a special reference to its immune role.

التفاصيل البيبلوغرافية
العنوان: Structural and immunohistochemical characterization of pancreas of Molly fish (Poecilia sphenops), with a special reference to its immune role.
المؤلفون: Hussein MM; Department of Cell and Tissues, Faculty of Veterinary Medicine, Assuit University, Assiut, Egypt., Sayed RKA; Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Sohag University, Sohag, Egypt., Mokhtar DM; Department of Cell and Tissues, Faculty of Veterinary Medicine, Assuit University, Assiut, Egypt.; Department of Histology and Anatomy, School of Veterinary Medicine, Badr University in Assuit, Assiut, Egypt.
المصدر: Microscopy research and technique [Microsc Res Tech] 2023 Dec; Vol. 86 (12), pp. 1667-1680. Date of Electronic Publication: 2023 Aug 23.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Wiley-Liss Country of Publication: United States NLM ID: 9203012 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1097-0029 (Electronic) Linking ISSN: 1059910X NLM ISO Abbreviation: Microsc Res Tech Subsets: MEDLINE
أسماء مطبوعة: Original Publication: New York, NY : Wiley-Liss, c1992-
مواضيع طبية MeSH: Poecilia*, Animals ; NF-kappa B/metabolism ; NF-E2-Related Factor 2/metabolism ; Pancreas ; Transforming Growth Factor beta/metabolism
مستخلص: Recently, teleost species have been considered important model systems for investigating different research areas including immunologic one. The available literature provides poor data about the localization and the structure of pancreas in Molly fish. Moreover, little attention has been paid to the immunologic role of pancreatic tissue of teleost, particularly Molly fish; therefore, this study aimed to highlights the description of pancreatic tissue in Molly fish using light- and electron- microscopy, focusing on the role of pancreatic immune cells and pancreatic acinar cells in immune responses. Microscopic analysis revealed that the pancreas of Molly fish was composed of intrahepatic, disseminated and compact parts. Exocrine pancreatic tissue was diffusely extended within the hepatic tissue forming hepatopancreas. The disseminated pancreas appeared as several irregular nodules of pancreatic tissue localized within the mesenteric adipose tissue. The compact pancreas appeared as an oval shaped body embedded within the mesenteric adipose tissue between the spleen and the intestinal loops. Several telocytes and melanomacrophages were detected within the disseminated pancreatic nodules. Moreover, dendritic cells were found in a close association to the exocrine pancreatic acini. The pancreatic acinar cells showed strong immunoreactivity to APG5, TGF-β, IL-1β, NF-κB, Nrf2, and SOX9 in both hepatopancreas and disseminated pancreas of Molly fish. S100 protein revealed a strong expression in the exocrine pancreatic acinar cells of disseminated pancreas and also in the endocrine cells of the compact pancreas. In conclusion, findings of this study suggest the potential role of the pancreas of the Molly fish in cell proliferation and differentiation, proinflammatory cytokines stimulation, and regulation of both innate and adaptive immunity. RESEARCH HIGHLIGHTS: Telocytes and melanomacrophages were detected in the disseminated pancreatic nodules of the Molly fish. In Molly fish, dendritic cells were found in a close association to the exocrine pancreatic acini. Strong immunoreactivity of the pancreatic acinar cells of the Molly fish to APG5, TGF-β, IL-1β, NF-κB, Nrf2, SOX9, and S100.
(© 2023 Wiley Periodicals LLC.)
References: Abad, M., Agulleiro, B., & Rombout, J. (1986). An immunocytochemical and ultrastructural study of the endocrine pancreas of Sparus auratus L.(Teleostei). General and Comparative Endocrinology, 64, 1-12.
Bassity, E., & Clark, T. G. (2012). Functional identification of dendritic cells in the teleost model, rainbow trout (Oncorhynchus mykiss). PLoS One, 7, e33196.
Bastide, P., Darido, C., Pannequin, J., Kist, R., Robine, S., Marty-Double, C., Bibeau, F., Scherer, G., Joubert, D., & Hollande, F. (2007). Sox9 regulates cell proliferation and is required for Paneth cell differentiation in the intestinal epithelium. The Journal of Cell Biology, 178, 635-648.
Beccaria, C., Diaz, J., & Connes, R. (1992). Effects of dietary conditions on the exocrine pancreas of the sea bass, Dicentrarchus labrax L.(Teleostei). Aquaculture, 101, 163-176.
Correa, R. G., Tergaonkar, V., Ng, J. K., Dubova, I., Izpisua-Belmonte, J. C., & Verma, I. M. (2004). Characterization of NF-κΒ/IκΒ proteins in zebra fish and their involvement in notochord development. Molecular and Cellular Biology, 24, 5257-5268.
Cretoiu, S. M., & Popescu, L. M. (2014). Telocytes revisited. Biomolecular Concepts, 5, 353-369.
Cutfield, J. F., Cutfield, S. M., Carne, A., Emdin, S. O., & Falkmer, S. (1986). The isolation, purification and amino-acid sequence of insulin from the teleost fish Cottus scorpius (daddy sculpin). European Journal of Biochemistry, 158, 117-123.
Cutfield, S. M., & Cutfield, J. F. (1993). A second glucagon in the pancreatic islets of the daddy sculpin Cottus scorpius. General and Comparative Endocrinology, 91, 281-286.
De Dios, I. (2010). Inflammatory role of the acinar cells during acute pancreatitis. World Journal of Gastrointestinal Pharmacology and Therapeutics, 1, 15-20.
Di Sabatino, A., Pickard, K. M., Rampton, D., Kruidenier, L., Rovedatti, L., Leakey, N. A., Corazza, G. R., Monteleone, G., & Macdonald, T. T. (2008). Blockade of transforming growth factor β upregulates T-box transcription factor T-bet, and increases T helper cell type 1 cytokine and matrix metalloproteinase-3 production in the human gut mucosa. Gut, 57, 605-612.
Dinarello, C. A. (2011). A clinical perspective of IL-1β as the gatekeeper of inflammation. European Journal of Immunology, 41, 1203-1217.
Donato, R. (2001). S100: A multigenic family of calcium-modulated proteins of the EF-hand type with intracellular and extracellular functional roles. The International Journal of Biochemistry & Cell Biology, 33, 637-668.
Fortin, J. S., Santamaria-Bouvier, A., Lair, S., Dallaire, A. D., & Benoit-Biancamano, M.-O. (2015). Anatomic and molecular characterization of the endocrine pancreas of a teleostean fish: Atlantic wolffish (Anarhichas lupus). Zoological Studies, 54, 1-7.
Furuyama, K., Kawaguchi, Y., Akiyama, H., Horiguchi, M., Kodama, S., Kuhara, T., Hosokawa, S., Elbahrawy, A., Soeda, T., & Koizumi, M. (2011). Continuous cell supply from a Sox9-expressing progenitor zone in adult liver, exocrine pancreas and intestine. Nature Genetics, 43, 34-41.
Geyer, H., Nel, M. M., & Swanepoel, J. (1996). Histology and ultrastructure of the hepatopancreas of the tigerfish, Hydrocynus forskahlii. Journal of Morphology, 227, 93-100.
Guilherme, S., Gaivão, I., Santos, M., & Pacheco, M. (2012). DNA damage in fish (Anguilla Anguilla) exposed to a glyphosate-based herbicide-elucidation of organ-specificity and the role of oxidative stress. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 743, 1-9.
Gukovskaya, A. S., Gukovsky, I., Zaninovic, V., Song, M., Sandoval, D., Gukovsky, S., & Pandol, S. J. (1997). Pancreatic acinar cells produce, release, and respond to tumor necrosis factor-alpha. Role in regulating cell death and pancreatitis. The Journal of Clinical Investigation, 100, 1853-1862.
Huang, S., Wang, J., Yue, W., Chen, J., Gaughan, S., Lu, W., Lu, G., & Wang, C. (2015). Transcriptomic variation of hepatopancreas reveals the energy metabolism and biological processes associated with molting in Chinese mitten crab, Eriocheir sinensis. Scientific Reports, 5, 14015.
Huang, Y.-L., Zhang, F.-L., Tang, X.-L., & Yang, X.-J. (2021). Telocytes enhances M1 differentiation and phagocytosis while inhibits mitochondria-mediated apoptosis via activation of NF-κB in macrophages. Cell Transplantation, 30, 1-16.
Hussein, M. M., & Mokhtar, D. M. (2018). The roles of telocytes in lung development and angiogenesis: An immunohistochemical, ultrastructural, scanning electron microscopy and morphometrical study. Developmental Biology, 443, 137-152.
Hussein, M. M., Sayed, R. K., & Mokhtar, D. M. (2023). Structural and immunohistochemical analysis of the cellular compositions of the liver of molly fish (Poecilia sphenops), focusing on its immune role. Zoological Letters, 9, 1-13.
Kaptaner, B. (2019). Immunohistochemical distribution of insulin-, glucagon-and somatostatincontaining cells in the pancreas of Lake Van fish (Alburnus tarichi Güldenstädt, 1814) (Cyprinidae). European Journal of Histochemistry: EJH, 63, 37-46.
Karnovsky, M. (1965). A formaldehyde-glutaraldehyde fixative of high osmolality for use in electron microscopy. The Journal of Cell Biology, 27, 137A.
Mokhtar, D. M. (2015). Histological, histochemical and ultrastructural characterization of the pancreas of the grass carp (Ctenopharyngodon idella). European Journal of Anatomy, 19, 145-153.
Mokhtar, D. M. (2021). Fish histology: From cells to organs. Apple Academic Press.
Mokhtar, D. M., Hussein, M. M., & Sayed, R. K. (2022). Novel identification and microscopy of the intestinal bulb of Molly fish (Poecilia sphenops) with a focus on its role in immunity. Microscopy and Microanalysis, 28, 1827-1839.
Mokhtar, D. M., Sayed, R. K., Zaccone, G., Albano, M., & Hussein, M. T. (2022). Ependymal and neural stem cells of adult Molly fish (Poecilia sphenops, Valenciennes, 1846) brain: Histomorphometry, Immunohistochemical, and ultrastructural studies. Cell, 11, 2659.
Naguib, S., Rizkalla, W., El-Rahman, A., & Abd El-Ghafar, F. A. (2009). Comparative histological and ultrastructural studies on the liver and pancreas of Schilbe mystus and Labeo niloticus. Egyptian Journal of Aquatic Biology and Fisheries, 13, 107-127.
Nelson, L. E., & Sheridan, M. A. (2006). Gastroenteropancreatic hormones and metabolism in fish. General and Comparative Endocrinology, 148, 116-124.
O'léime, C. S., Cryan, J. F., & Nolan, Y. M. (2017). Nuclear deterrents: Intrinsic regulators of IL-1β-induced effects on hippocampal neurogenesis. Brain, Behavior, and Immunity, 66, 394-412.
Pedersen, T., & Falk-Petersen, I. (1992). Morphological changes during metamorphosis in cod (Gadus morhua L.), with particular reference to the development of the stomach and pyloric caeca. Journal of Fish Biology, 41, 449-461.
Pierdominici, M., Vomero, M., Barbati, C., Colasanti, T., Maselli, A., Vacirca, D., Giovannetti, A., Malorni, W., & Ortona, E. (2012). Role of autophagy in immunity and autoimmunity, with a special focus on systemic lupus erythematosus. The FASEB Journal, 26, 1400-1412.
Poon, W., Hung, C., Nakano, K., & Randall, D. (2007). An in vivo study of common carp (Cyprinus carpio L.) liver during prolonged hypoxia. Comparative Biochemistry and Physiology Part D: Genomics and Proteomics, 2, 295-302.
Ramírez-García, A., Ramírez-Herrejón, J., Medina-Nava, M., Hernández-Morales, R., & Domínguez-Domínguez, O. (2018). Reproductive biology of the invasive species Pseudoxiphophorus bimaculatus and Poecilia sphenops in the Teuchitlán River, México. Journal of Applied Ichthyology, 34, 81-90.
Ramnath, R. D., Sun, J., & Bhatia, M. (2009). Involvement of SRC family kinases in substance P-induced chemokine production in mouse pancreatic acinar cells and its significance in acute pancreatitis. Journal of Pharmacology and Experimental Therapeutics, 329, 418-428.
Ramudo, L., Yubero, S., Manso, M. A., Vicente, S., & De Dios, I. (2009). Signal transduction of MCP-1 expression induced by pancreatitis-associated ascitic fluid in pancreatic acinar cells. Journal of Cellular and Molecular Medicine, 13, 1314-1320.
Reynolds, E. S. (1963). The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. The Journal of Cell Biology, 17, 208-212.
Sayed, R. K., Zaccone, G., Capillo, G., Albano, M., & Mokhtar, D. M. (2022). Structural and functional aspects of the spleen in molly fish Poecilia sphenops (Valenciennes, 1846): Synergistic interactions of stem cells, neurons, and immune cells. Biology, 11, 779.
Secombes, C. J., Wang, T., & Bird, S. (2011). The interleukins of fish. Developmental & Comparative Immunology, 35, 1336-1345.
Senoo, H. (2000). Chapter 18 - digestion, metabolism. In G. E. Krinke (Ed.), The laboratory rat-handbook of experimental animals. Academic Press.
Seymour, P. A., Freude, K. K., Dubois, C. L., Shih, H.-P., Patel, N. A., & Sander, M. (2008). A dosage-dependent requirement for Sox9 in pancreatic endocrine cell formation. Developmental Biology, 323, 19-30.
Singh, P., & Ali, S. A. (2022). Multifunctional role of S100 protein family in the immune system: An update. Cell, 11, 2274.
Soonthornchai, W., Rungrassamee, W., Karoonuthaisiri, N., Jarayabhand, P., Klinbunga, S., Söderhäll, K., & Jiravanichpaisal, P. (2010). Expression of immune-related genes in the digestive organ of shrimp, Penaeus monodon, after an oral infection by Vibrio harveyi. Developmental & Comparative Immunology, 34, 19-28.
Steinel, N. C., & Bolnick, D. I. (2017). Melanomacrophage centers as a histological indicator of immune function in fish and other poikilotherms. Frontiers in Immunology, 8, 827.
Sun, S., Xuan, F., Ge, X., Fu, H., Zhu, J., & Zhang, S. (2014). Identification of differentially expressed genes in hepatopancreas of oriental river prawn, Macrobrachium nipponense exposed to environmental hypoxia. Gene, 534, 298-306.
Takashima, F., & Hibiya, T. (1995). An atlas of fish histology: Normal and pathological features. College of Agriculture and Veterinary Medicine, Nihon University.
Viatour, P., Merville, M.-P., Bours, V., & Chariot, A. (2005). Phosphorylation of NF-κB and IκB proteins: Implications in cancer and inflammation. Trends in Biochemical Sciences, 30, 43-52.
Wang, M., & Zhu, Z. (2019). Nrf2 is involved in osmoregulation, antioxidation and immunopotentiation in Coilia nasus under salinity stress. Biotechnology & Biotechnological Equipment, 33, 1453-1463.
Wright, J. R., Jr., Pohajdak, B., Xu, B.-Y., & Leventhal, J. R. (2004). Piscine islet xenotransplantation. ILAR Journal, 45, 314-323.
Wu, Y., Zhou, Q., Guo, F., Chen, M., Tao, X., & Dong, D. (2021). S100 proteins in pancreatic cancer: Current knowledge and future perspectives. Frontiers in Oncology, 11, 711180.
Youson, J. H., Al-Mahrouki, A. A., Naumovski, D., & Conlon, J. M. (2001). The endocrine cells in the gastroenteropancreatic system of the bowfin, Amia calva L.: An immunohistochemical, ultrastructural, and immunocytochemical analysis. Journal of Morphology, 250, 208-224.
Zhu, J., Wang, H., Sun, Q., Ji, X., Zhu, L., Cong, Z., Zhou, Y., Liu, H., & Zhou, M. (2013). Nrf2 is required to maintain the self-renewal of glioma stem cells. BMC Cancer, 13, 1-11.
فهرسة مساهمة: Keywords: Brockmann bodies; IL-1β; SOX9; lymphocytes; pancreatic acini
المشرفين على المادة: 0 (NF-kappa B)
0 (NF-E2-Related Factor 2)
0 (Transforming Growth Factor beta)
تواريخ الأحداث: Date Created: 20230823 Date Completed: 20240214 Latest Revision: 20240214
رمز التحديث: 20240214
DOI: 10.1002/jemt.24407
PMID: 37610072
قاعدة البيانات: MEDLINE
الوصف
تدمد:1097-0029
DOI:10.1002/jemt.24407