دورية أكاديمية

Sulfadiazine analogs: anti-Toxoplasma in vitro study of sulfonamide triazoles.

التفاصيل البيبلوغرافية
العنوان: Sulfadiazine analogs: anti-Toxoplasma in vitro study of sulfonamide triazoles.
المؤلفون: Arafa FM; Department of Medical Parasitology, Faculty of Medicine, Alexandria University, Alexandria, 21577, Egypt. f_arafa10@alexmed.edu.eg., Osman DH; Department of Parasitology, Medical Research Institute, Alexandria University, Alexandria, 21561, Egypt., Tolba MM; Department of Parasitology, Medical Research Institute, Alexandria University, Alexandria, 21561, Egypt., Rezki N; Department of Chemistry, College of Science, Taibah University, Al-Madinah Al-Munawarah, 30002, Saudi Arabia., Aouad MR; Department of Chemistry, College of Science, Taibah University, Al-Madinah Al-Munawarah, 30002, Saudi Arabia., Hagar M; Department of Chemistry, Faculty of Science, Alexandria University, Alexandria, 21321, Egypt., Osman M; Department of Parasitology, Medical Research Institute, Alexandria University, Alexandria, 21561, Egypt., Said H; Department of Parasitology, Medical Research Institute, Alexandria University, Alexandria, 21561, Egypt.
المصدر: Parasitology research [Parasitol Res] 2023 Oct; Vol. 122 (10), pp. 2353-2365. Date of Electronic Publication: 2023 Aug 23.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Springer International Country of Publication: Germany NLM ID: 8703571 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1432-1955 (Electronic) Linking ISSN: 09320113 NLM ISO Abbreviation: Parasitol Res Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Berlin : Springer International, c1987-
مواضيع طبية MeSH: Sulfadiazine*/pharmacology , Toxoplasma*, Sulfanilamide ; Sulfonamides ; Triazoles
مستخلص: Toxoplasmosis is an infection that prevails all over the world and is caused by the obligate intracellular protozoan parasite Toxoplasma gondii (T. gondii). Promising novel compounds for the treatment of T. gondii are introduced in the current investigation. In order to test their in vitro potency against T. gondii tachyzoites, six 1,2,3-triazoles-based sulfonamide scaffolds with terminal NH 2 or OH group were prepared and investigated as sulfadiazine equivalents. When compared to sulfadiazine, which served as a positive control, hybrid molecules showed much more anti-Toxoplasma activity. The results showed that the IC 50 of the examined compounds 3(a-f) were recoded as 0.07492 μM, 0.07455 μM, 0.0392 μM, 0.03124 μM, 0.0533 μM, and 0.01835 μM, respectively, while the sulfadiazine exhibited 0.1852 μM. The studied 1,2,3-triazole-sulfadrug molecular conjugates 3(a-f) revealed selectivity index of 10.4, 8.9, 25.4, 21, 8.3, and 29; respectively. The current study focused on the newly synthesized amino derivatives 3(d-f), as they contain the more potent amino groups which are recognized to be essential elements and promote better biological activity. Extracellular tachyzoites underwent striking morphological alterations after 2 h of treatment as seen by scanning electron microscopy (SEM). Additionally, the intracellular tachyzoite exposed to the newly synthesized amino derivatives 3(d-f) for a 24-h period of treatment revealed damaged and altered morphology by transmission electron microscopic (TEM) indicating cytopathic effects. Moreover, compound 3f underwent the most pronounced changes, indicating that it had the strongest activity against T. gondii.
(© 2023. The Author(s).)
References: Aikawa M, Komata Y, Asai T, Midorikawa O (1977) Transmission and scanning electron microscopy of host cell entry by Toxoplasma gondii. Am J Pathol 87(2):285. (PMID: 8511682032037)
Aljohani FS et al (2022) Synthesis, characterization and nanoformulation of novel sulfonamide-1, 2, 3-triazole molecular conjugates as potent antiparasitic agents. Int J Mol Sci 23(8):4241. (PMID: 35457059902593410.3390/ijms23084241)
Al-Malki ES (2021) Toxoplasmosis: stages of the protozoan life cycle and risk assessment in humans and animals for an enhanced awareness and an improved socio-economic status. Saudi J Biol Sci 28(1):962–969. (PMID: 10.1016/j.sjbs.2020.11.007)
Almeida-Souza F et al (2020) 1, 4-Disubstituted-1, 2, 3-Triazole compounds induce ultrastructural alterations in leishmania amazonensis promastigote: an in vitro antileishmanial and in silico pharmacokinetic study. Int J Mol Sci 21(18):6839. (PMID: 32961842755534910.3390/ijms21186839)
Anderson AC (2005) Targeting DHFR in parasitic protozoa. Drug Discov Today 10(2):121–128. (PMID: 1571816110.1016/S1359-6446(04)03308-2)
Bérubé G (2016) An overview of molecular hybrids in drug discovery. Expert Opin Drug Discovery 11(3):281–305. (PMID: 10.1517/17460441.2016.1135125)
Boyle JP, Saeij JP, Coller SP, Boothroyd JC (2006) Polymorphic secreted kinases are key virulence factors in toxoplasmosis. Am J Trop Med Hyg 314(5806):1780–1783.
Carvalho C, De Melo E (2010a) Anti-parasitic action and elimination of intracellular Toxoplasma gondii in the presence of novel thiosemicarbazone and its 4-thiazolidinone derivatives. Braz J Med Biol Res 43(2):139–149. (PMID: 1989399410.1590/S0100-879X2009005000038)
Celik F, Unver Y, Barut B, Ozel A, Sancak K (2018) Synthesis, characterization and biological activities of new symmetric bis-1, 2, 3-triazoles with click chemistry. Med Chem 14(3):230–241. (PMID: 2916509210.2174/1573406413666171120165226)
Chen Y et al (2018) Identification of novel and selective non-peptide inhibitors targeting the polo-box domain of polo-like kinase 1. Bioorg Chem 81:278–288. (PMID: 3017027610.1016/j.bioorg.2018.08.030)
Choi W-Y et al (1997) Foodborne outbreaks of human toxoplasmosis. J Infect Dis 175(5):1280–1282. (PMID: 912910510.1086/593702)
Chou T-C (2006) Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies. Pharmacol Rev 58(3):621–681. (PMID: 1696895210.1124/pr.58.3.10)
Chou T-C, Talaly P (1977) A simple generalized equation for the analysis of multiple inhibitions of Michaelis-Menten kinetic systems. J Biol Chem 252(18):6438–6442. (PMID: 89341810.1016/S0021-9258(17)39978-7)
Chulay JD, Watkins WM, Sixsmith DG (1984) Synergistic antimalarial activity of pyrimethamine and sulfadoxine against Plasmodium falciparum in vitro. Am J Trop Med Hyg 33(3):325–330. (PMID: 637540410.4269/ajtmh.1984.33.325)
Conseil V, Soete M, Dubremetz J (1999) Serine protease inhibitors block invasion of host cells by Toxoplasma gondii. Antimicrob Agents Chemother 43(6):1358–1361. (PMID: 103487528927810.1128/AAC.43.6.1358)
Craik DJ, Fairlie DP, Liras S, Price D (2013) The future of peptide-based drugs. Chem Biol Drug Des 81(1):136–147. (PMID: 2325313510.1111/cbdd.12055)
de Souza W, Attias M (2018) New advances in scanning microscopy and its application to study parasitic protozoa. Exp Parasitol 190:10–33. (PMID: 2970211110.1016/j.exppara.2018.04.018)
Derouin F, Chastang C (1989) In vitro effects of folate inhibitors on Toxoplasma gondii. Antimicrob Agents Chemother 33(10):1753–1759. (PMID: 253156817275010.1128/AAC.33.10.1753)
Diab M, El-Bahy M (2008) Toxoplasma gondii: virulence of tachyzoites in serum free media at different temperatures. Exp Parasitol 118(1):75–79. (PMID: 1790455410.1016/j.exppara.2007.06.009)
Djurković-Djaković O, Nikolić A, Bobić B, Klun I, Aleksić A (2005) Stage conversion of Toxoplasma gondii RH parasites in mice by treatment with atovaquone and pyrrolidine dithiocarbamate. Microbes Infect 7(1):49–54. (PMID: 1571607710.1016/j.micinf.2004.09.016)
Dubey JP (2016) Toxoplasmosis of animals and humans. CRC press. (PMID: 10.1201/9781420092370)
Eaton MS, Weiss LM, Kim K (2006) Cyclic nucleotide kinases and tachyzoite–bradyzoite transition in Toxoplasma gondii. Int J Parasitol 36(1):107–114. (PMID: 1621624810.1016/j.ijpara.2005.08.014)
Elkerdany ED, Elnassery SM, Arafa FM, Zaki SA, Mady RF (2020) In vitro effect of a novel protease inhibitor cocktail on Toxoplasma gondii tachyzoites. Exp Parasitol 219:108010. (PMID: 3300729710.1016/j.exppara.2020.108010)
El-Tombary AA, Ismail KA, Aboulwafa OM, Omar A-MM, El-Azzouni MZ, El-Mansoury ST (1999) Novel triazolo [4, 3-a] quinazolinone and bis-triazolo [4, 3-a: 4, 3′-c] quinazolines: synthesis and antitoxoplasmosis effect. Il Farmaco 54(7):486–495. (PMID: 1048691710.1016/S0014-827X(99)00038-5)
Eng R, Padberg F, Smith S, Tan E, Cherubin C (1991) Bactericidal effects of antibiotics on slowly growing and nongrowing bacteria. Antimicrob Agents Chemother 35(9):1824–1828. (PMID: 195285224527510.1128/AAC.35.9.1824)
Ertl P, Rohde B, Selzer P (2000) Fast calculation of molecular polar surface area as a sum of fragment-based contributions and its application to the prediction of drug transport properties. J Med Chem 43(20):3714–3717. (PMID: 1102028610.1021/jm000942e)
Galal L, Hamidović A, Dardé ML, Mercier M (2019) Diversity of Toxoplasma gondii strains at the global level and its determinants. Food Waterborne Parasitol 15:e00052. (PMID: 32095622703399110.1016/j.fawpar.2019.e00052)
Guo H, Gao Y, N'Da DD, Xuan X (2021) In vitro anti-Toxoplasma gondii efficacy of synthesised benzyltriazole derivatives. Onderstepoort J Vet Res 88(1):1–8. (PMID: 10.4102/ojvr.v88i1.1898)
Hammouda N, El-Mansoury S, El-Azzouni M (1992) Toxoplasma gondii: scanning electron microscopic study before and after treatment. J Trop Med 2:77–83.
Hermes G et al (2008) Neurological and behavioral abnormalities, ventricular dilatation, altered cellular functions, inflammation, and neuronal injury in brains of mice due to common, persistent, parasitic infection. J Neuroinflammation 5(1):1–37. (PMID: 10.1186/1742-2094-5-48)
Hernandez AV et al (2017) A systematic review and meta-analysis of the relative efficacy and safety of treatment regimens for HIV-associated cerebral toxoplasmosis: is trimethoprim-sulfamethoxazole a real option? HIV Med 18(2):115–124. (PMID: 2735330310.1111/hiv.12402)
Hopper AT et al (2019) Discovery of selective Toxoplasma gondii dihydrofolate reductase inhibitors for the treatment of toxoplasmosis. J Med Chem 62(3):1562–1576. (PMID: 30624926657112210.1021/acs.jmedchem.8b01754)
Howe DK, Sibley LD (1995) Toxoplasma gondii comprises three clonal lineages: correlation of parasite genotype with human disease. J Infect Dis 172(6):1561–1566. (PMID: 759471710.1093/infdis/172.6.1561)
Huisgen R (1963) 1, 3-dipolar cycloadditions. Past and future. Angew Chem Int Ed Engl 2(10):565–598. (PMID: 10.1002/anie.196305651)
Jeliński T, Przybyłek M, Cysewski P (2019) Solubility advantage of sulfanilamide and sulfacetamide in natural deep eutectic systems: experimental and theoretical investigations. Drug Dev Ind Pharm 45(7):1120–1129. (PMID: 3088324010.1080/03639045.2019.1597104)
Khosravi M, Mohammad Rahimi H, Doroud D, Mirsamadi ES, Mirjalali H, Zali MR (2020) In vitro evaluation of mannosylated paromomycin-loaded solid lipid nanoparticles on acute toxoplasmosis. Front Cell Infect Microbiol 10:33. (PMID: 32117807703165810.3389/fcimb.2020.00033)
Kongsaengdao S, Samintarapanya K, Oranratnachai K, Prapakarn W, Apichartpiyakul C (2008) Randomized controlled trial of pyrimethamine plus sulfadiazine versus trimethoprim plus sulfamethoxazole for treatment of toxoplasmic encephalitis in AIDS patients. J Int Assoc Physicians AIDS Care 7(1):11–16. (PMID: 10.1177/1545109707301244)
Kumar S, Khokra SL, Yadav A (2021) Triazole analogues as potential pharmacological agents: a brief review. Future J Pharm Sci 7(1):1–22.
Kumar S, Prahalathan P, Saravanakumar M, Raja B (2014) Vanillic acid prevents the deregulation of lipid metabolism, endothelin 1 and up regulation of endothelial nitric oxide synthase in nitric oxide deficient hypertensive rats. Eur J Pharmacol 743:117–125. (PMID: 2523907110.1016/j.ejphar.2014.09.010)
Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (2012) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 64:4–17. (PMID: 10.1016/j.addr.2012.09.019)
McGettigan BD, Hew M, Phillips E, McLean-Tooke A (2012) Sulphadiazine-induced renal stones in a 63-year-old HIV-infected man treated for toxoplasmosis. Case Rep Dermatol 2012:bcr2012006638.
Molina DA et al (2021) In vitro evaluation of new 4-thiazolidinones on invasion and growth of Toxoplasma gondii. Int J Parasitol Drugs Drug Resist 16:129–139. https://doi.org/10.1016/j.ijpddr.2021.05.004. (PMID: 10.1016/j.ijpddr.2021.05.004341025898187164)
Montazeri M et al (2020) Anti-Toxoplasma activities of the hydroalcoholic extract of some brassicaceae species. Adv Biomed Res 9:5. (PMID: 32055539700355110.4103/abr.abr_206_19)
Ozgonul C, Besirli CG (2017) Recent developments in the diagnosis and treatment of ocular toxoplasmosis. Ophthalmic Res 57(1):1–12. (PMID: 2772365710.1159/000449169)
Paredes-Santos T, Martins-Duarte E, Vitor R, De Souza W, Attias M, Vommaro R (2013) Spontaneous cystogenesis in vitro of a Brazilian strain of Toxoplasma gondii. Parasitol Int 62(2):181–188. (PMID: 2326920110.1016/j.parint.2012.12.003)
Park Y-H, Han J-H, Nam H-W (2011) Clinical features of ocular toxoplasmosis in Korean patients. Korean J Parasitol 49(2):167. (PMID: 21738273312107410.3347/kjp.2011.49.2.167)
Pink R, Hudson A, Mouriès M-A, Bendig M (2005) Opportunities and challenges in antiparasitic drug discovery. Nat Rev Drug Discov 4(9):727–740. (PMID: 1613810610.1038/nrd1824)
Portes JA et al (2018) A new iron (III) complex-containing sulfadiazine inhibits the proliferation and induces cystogenesis of Toxoplasma gondii. Parasitol Res 117(9):2795–2805. (PMID: 2993469110.1007/s00436-018-5967-7)
Ryu B-Y, Emrick T (2011) Bisphenol-1, 2, 3-triazole (BPT) epoxies and cyanate esters: synthesis and self-catalyzed curing. Macromolecules 44(14):5693–5700. (PMID: 10.1021/ma200767j)
Saeedi M et al (2019) Design and synthesis of novel quinazolinone-1, 2, 3-triazole hybrids as new anti-diabetic agents: in vitro α-glucosidase inhibition, kinetic, and docking study. Bioorg Chem 83:161–169. (PMID: 3036631610.1016/j.bioorg.2018.10.023)
Sahu A, Sahu P, Agrawal R (2020) A recent review on drug modification using 1, 2, 3-triazole. Curr Chem Biol 14(2):71–87. (PMID: 10.2174/2212796814999200807214519)
Said MA et al (2021) New 1, 2, 3-triazole scaffold schiff bases as potential anti-COVID-19: design, synthesis, DFT-molecular docking, and cytotoxicity aspects. Vaccines 9(9):1012. (PMID: 34579249847218510.3390/vaccines9091012)
Sanchez SG, Besteiro S (2021) The pathogenicity and virulence of Toxoplasma gondii. Virulence 12(1):3095–3114. (PMID: 34895084866791610.1080/21505594.2021.2012346)
Saraf P, Shwab EK, Dubey JP, Su C (2017) On the determination of Toxoplasma gondii virulence in mice. Exp Parasitol 174:25–30. (PMID: 2815380110.1016/j.exppara.2017.01.009)
Shaw MK, Roos DS, Tilney LG (2002) Cysteine and serine protease inhibitors block intracellular development and disrupt the secretory pathway of Toxoplasma gondii. Microbes Infect 4(2):119–132. (PMID: 1188004210.1016/S1286-4579(01)01520-9)
Smith CL, Powell KR (2000) Review of the sulfonamides and trimethoprim. Pediatr Rev 21(11):368–371. (PMID: 1107702010.1542/pir.21.11.368)
Thebault A, Kooh P, Cadavez V, Gonzales-Barron U, Villena I (2021) Risk factors for sporadic toxoplasmosis: a systematic review and meta-analysis. Microbial Risk Analysis 17:100133. (PMID: 10.1016/j.mran.2020.100133)
Viegas-Junior C, Danuello A, da Silva BV, Barreiro EJ, Fraga CAM (2007) Molecular hybridization: a useful tool in the design of new drug prototypes. Curr Med Chem 14(17):1829–1852. (PMID: 1762752010.2174/092986707781058805)
Wei H-X, Wei S-S, Lindsay DS, Peng H-J (2015) A systematic review and meta-analysis of the efficacy of anti-Toxoplasma gondii medicines in humans. PloS One 10(9):e0138204. (PMID: 26394212457893210.1371/journal.pone.0138204)
Winey M, Meehl JB, O'Toole ET, Giddings TH Jr (2014) Conventional transmission electron microscopy. Mol Biol Cell 25(3):319–323. (PMID: 24482357390727210.1091/mbc.e12-12-0863)
Wong S-Y, Remington JS (1993) Biology of Toxoplasma gondii. AIDS (London, England) 7(3):299–316. (PMID: 847119110.1097/00002030-199303000-00001)
Yamini L, Vijjulatha M (2008) Inhibitors of human dihydrofolate reductase: a computational design and docking studies using glide. E-Journal of Chemistry 5(2):263–270. (PMID: 10.1155/2008/401738)
Zhang R-H, Jin R, Deng H, Shen Q-K, Quan Z-S, Jin C-M (2021) Evaluation of the anti-Toxoplasma gondii activity of hederagenin in vitro and in vivo. Korean J Parasitol 59(3):297. (PMID: 34218602825549910.3347/kjp.2021.59.3.297)
Zhang S et al (2017) Triazole derivatives and their anti-tubercular activity. Eur J Med Chem 138:501–513. (PMID: 2869291510.1016/j.ejmech.2017.06.051)
فهرسة مساهمة: Keywords: 1,2,3-triazoles; Click chemistry; In vitro study; SEM; TEM; Toxoplasma gondii
المشرفين على المادة: 0N7609K889 (Sulfadiazine)
21240MF57M (Sulfanilamide)
0 (Sulfonamides)
0 (Triazoles)
تواريخ الأحداث: Date Created: 20230823 Date Completed: 20230912 Latest Revision: 20230922
رمز التحديث: 20230922
مُعرف محوري في PubMed: PMC10495491
DOI: 10.1007/s00436-023-07936-x
PMID: 37610452
قاعدة البيانات: MEDLINE
الوصف
تدمد:1432-1955
DOI:10.1007/s00436-023-07936-x