دورية أكاديمية

An Animal Model of Functional Tricuspid Regurgitation by Leaflet Tethering Using Image-Guided Chordal Encircling Snares.

التفاصيل البيبلوغرافية
العنوان: An Animal Model of Functional Tricuspid Regurgitation by Leaflet Tethering Using Image-Guided Chordal Encircling Snares.
المؤلفون: Onohara D; Structural Heart Research and Innovation Laboratory, Carlyle Fraser Heart Center at the Emory University Hospital Midtown, Atlanta, GA, USA.; Division of Cardiothoracic Surgery, Emory University School of Medicine, Atlanta, GA, USA., Silverman M; Structural Heart Research and Innovation Laboratory, Carlyle Fraser Heart Center at the Emory University Hospital Midtown, Atlanta, GA, USA.; Division of Cardiothoracic Surgery, Emory University School of Medicine, Atlanta, GA, USA., Suresh KS; Structural Heart Research and Innovation Laboratory, Carlyle Fraser Heart Center at the Emory University Hospital Midtown, Atlanta, GA, USA.; Division of Cardiothoracic Surgery, Emory University School of Medicine, Atlanta, GA, USA., Xu D; Structural Heart Research and Innovation Laboratory, Carlyle Fraser Heart Center at the Emory University Hospital Midtown, Atlanta, GA, USA.; Division of Cardiothoracic Surgery, Emory University School of Medicine, Atlanta, GA, USA., He Q; Structural Heart Research and Innovation Laboratory, Carlyle Fraser Heart Center at the Emory University Hospital Midtown, Atlanta, GA, USA.; Division of Cardiothoracic Surgery, Emory University School of Medicine, Atlanta, GA, USA., King CL; Structural Heart Research and Innovation Laboratory, Carlyle Fraser Heart Center at the Emory University Hospital Midtown, Atlanta, GA, USA.; Division of Cardiothoracic Surgery, Emory University School of Medicine, Atlanta, GA, USA., Tom SK; Structural Heart Research and Innovation Laboratory, Carlyle Fraser Heart Center at the Emory University Hospital Midtown, Atlanta, GA, USA.; Division of Cardiothoracic Surgery, Emory University School of Medicine, Atlanta, GA, USA., Kalra K; Division of Cardiothoracic Surgery, Emory University School of Medicine, Atlanta, GA, USA., Padala M; Nyra Medical, Inc., Decatur, GA, USA. psmuralidhar@gmail.com.
المصدر: Journal of cardiovascular translational research [J Cardiovasc Transl Res] 2024 Apr; Vol. 17 (2), pp. 417-425. Date of Electronic Publication: 2023 Aug 24.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't; Research Support, N.I.H., Extramural
اللغة: English
بيانات الدورية: Publisher: Springer Country of Publication: United States NLM ID: 101468585 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1937-5395 (Electronic) Linking ISSN: 19375387 NLM ISO Abbreviation: J Cardiovasc Transl Res Subsets: MEDLINE
أسماء مطبوعة: Original Publication: New York, NY : Springer
مواضيع طبية MeSH: Tricuspid Valve Insufficiency*/physiopathology , Tricuspid Valve Insufficiency*/diagnostic imaging , Tricuspid Valve Insufficiency*/surgery , Tricuspid Valve*/physiopathology , Tricuspid Valve*/diagnostic imaging , Tricuspid Valve*/surgery , Disease Models, Animal* , Chordae Tendineae*/physiopathology , Chordae Tendineae*/diagnostic imaging , Chordae Tendineae*/surgery, Animals ; Sus scrofa ; Ultrasonography, Interventional ; Swine ; Cardiac Catheterization/instrumentation ; Echocardiography, Doppler, Color
مستخلص: Several interventional therapies are in development to treat functional tricuspid regurgitation. Most have failed to achieve adequate efficacy, as animal models of this lesion are lacking. We developed a new image-guided technique in swine, by tethering the tricuspid valve chordae using echo-guided chordal encircling snares. Five swine underwent baseline echocardiographic assessment of tricuspid valve function, followed by echo-guided placement of snares that encircle the chordae inserting into the anterior and posterior tricuspid valve leaflets. Tethering these snares and stabilizing them on the right ventricle caused the regurgitant fraction to increase from 8.48±5.38% to 48.76±12.5%, and the valve tenting area to increase from 60.26±52.19 to 160.9±86.92 mm 2 . Image-guided chordal encircling snares could reproducibly induce clinically significant levels of functional tricuspid regurgitation and create a valve geometry like that seen in patients, providing a new animal model for use to study novel interventional devices.
(© 2023. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.)
References: Zhan Y, Debs D, Khan MA, Nguyen DT, Graviss EA, Khalaf S, Little SH, Reardon MJ, Nagueh S, Quinones MA, Kleiman N, Zoghbi WA, Shah DJ. Natural history of functional tricuspid regurgitation quantified by cardiovascular magnetic resonance. J Am Coll Cardiol. 2020;76:1291–301. (PMID: 10.1016/j.jacc.2020.07.03632912443)
Mutlak D, Khalil J, Lessick J, Kehat I, Agmon Y, Aronson D. Risk factors for the development of functional tricuspid regurgitation and their population-attributable fractions. JACC Cardiovasc Imaging. 2020;13:1643–51. (PMID: 10.1016/j.jcmg.2020.01.01532305485)
Sala A, Lorusso R, Bargagna M, Ascione G, Ruggeri S, Meneghin R, Schiavi D, Buzzatti N, Trumello C, Monaco F, Agricola E, Alfieri O, Castiglioni A, De Bonis M. Isolated tricuspid valve surgery: first outcomes report according to a novel clinical and functional staging of tricuspid regurgitation. Eur J Cardiothorac Surg. 2021;60:1124–30. (PMID: 10.1093/ejcts/ezab22833970221)
Pahwa S, Saran N, Pochettino A, Schaff H, Stulak J, Greason K, Daly R, Crestanello J, King K, Dearani J. Outcomes of tricuspid valve surgery in patients with functional tricuspid regurgitation. Eur J Cardiothorac Surg. 2021;59:577–85. (PMID: 10.1093/ejcts/ezaa35033159792)
Besler C, Meduri CU, Lurz P. Transcatheter treatment of functional tricuspid regurgitation using the Trialign device. Interv Cardiol. 2018;13:8–13. (PMID: 10.15420/icr.2017:21:1295938305872345)
Schofer J. Transcatheter interventions for tricuspid regurgitation: Trialign and Mitralign. EuroIntervention. 2016;12:Y119–20. (PMID: 10.4244/EIJV12SYA3327640023)
Lurz P, Besler C, Kiefer P, Ender J, Seeburger J. Early experience of the Trialign system for catheter-based treatment of severe tricuspid regurgitation. Eur Heart J. 2016;37:3543. (PMID: 10.1093/eurheartj/ehw25327354054)
Pardo Sanz A, Gomez JLZ, Tahoces LS, Ruiz JMM, Martin AG, Gomez AG, Baydes RH, Sequeiros MA, Fernandez MS, Barcelo JLM, Ferrer EG, Santos SF, Loban CF, Recalde AS. Long-term outcomes of percutaneous tricuspid annuloplasty with Cardioband device. Eur Heart J Cardiovasc Imaging. 2022;23:979–88. (PMID: 10.1093/ehjci/jeac07935511547)
Kuwata S, Taramasso M, Nietlispach F, Maisano F. Transcatheter tricuspid valve repair toward a surgical standard: first-in-man report of direct annuloplasty with a cardioband device to treat severe functional tricuspid regurgitation. Eur Heart J. 2017;38:1261. (PMID: 10.1093/eurheartj/ehw66028073862)
Reddy VY, Abbo AR, Ruiz CE, Kerner A, Kreidel F, Topilsky Y, Kipshidze N, Avisar N, Petru J, Neuzil P. First-in-human percutaneous circumferential annuloplasty for secondary tricuspid regurgitation. JACC Case Rep. 2020;2:2176–82. (PMID: 10.1016/j.jaccas.2020.08.032343171338299844)
Fam NP, Ali FM, Hassanin M, Ong G. Transcatheter tricuspid valve repair with the modified TriClip/MitraClip G4 system. EuroIntervention. 2021;17:e441–2. (PMID: 10.4244/EIJ-D-20-01295334333909724951)
Aurich M, Volz MJ, Mereles D, Geis NA, Frey N, Konstandin MH, Raake PW. Initial Experience with the PASCAL ace implant system for treatment of severe tricuspid regurgitation. Circ Cardiovasc Interv. 2021;14:e010770. (PMID: 10.1161/CIRCINTERVENTIONS.121.01077034433291)
Asmarats L, Perlman G, Praz F, Hensey M, Chrissoheris MP, Philippon F, Ofek H, Ye J, Puri R, Pibarot P, Attinger A, Moss R, Bedard E, Moschovitis A, Reineke D, Lauck S, Blanke P, Leipsic J, Spargias K, et al. Long-term outcomes of the FORMA transcatheter tricuspid valve repair system for the treatment of severe tricuspid regurgitation: insights from the first-in-human experience. JACC Cardiovasc Interv. 2019;12:1438–47. (PMID: 10.1016/j.jcin.2019.04.03831395213)
Fam NP, von Bardeleben RS, Hensey M, Kodali SK, Smith RL, Hausleiter J, Ong G, Boone R, Ruf T, George I, Szerlip M, Nabauer M, Ali FM, Moss R, Bapat V, Schnitzler K, Kreidel F, Ye J, Deva DP, et al. Transfemoral transcatheter tricuspid valve replacement with the EVOQUE System: a multicenter, observational, first-in-human experience. JACC Cardiovasc Interv. 2021;14:501–11. (PMID: 10.1016/j.jcin.2020.11.04533582084)
Otaki M, Lust RM. Modification of De Vega’s tricuspid annuloplasty for experimental tricuspid regurgitation. J Card Surg. 1994;9:399–404. (PMID: 10.1111/j.1540-8191.1994.tb00868.x7949667)
Walter EM, Vasilyev NV, Sill B, Padala M, Jimenez J, Yoganathan AP, Hetzer R, del Nido PJ. Creation of a tricuspid valve regurgitation model from tricuspid annular dilatation using the cardioport video-assisted imaging system. J Heart Valve Dis. 2011;20:184–8. (PMID: 21560820)
Buffington CW, Nystrom EUM. Neither the accuracy nor the precision of thermal dilution cardiac output measurements is altered by acute tricuspid regurgitation in pigs. Anesth Analg. 2004;98:884–90. (PMID: 10.1213/01.ANE.0000105923.09732.9315041567)
Boerboom LE, Kinney TE, Olinger GN, Hoffmann RG. Validity of cardiac output measurement by the thermodilution method in the presence of acute tricuspid regurgitation. J Thorac Cardiovasc Surg. 1993;106:636–42. (PMID: 10.1016/S0022-5223(19)33705-58412257)
Xie XJ, Liao SJ, Wu YH, Lu C, Zhu P, Fei HW, Xiao XJ, Huang HL. Tricuspid leaflet resection in an open beating heart for the creation of a canine tricuspid regurgitation model. Interact Cardiovasc Thorac Surg. 2016;22:149–54. (PMID: 10.1093/icvts/ivv30326558988)
Ishibashi Y, Rembert JC, Carabello BA, Nemoto S, Hamawaki M, Zile MR, Greenfield JC Jr, Gt C. Normal myocardial function in severe right ventricular volume overload hypertrophy. Am J Physiol Heart Circ Physiol. 2001;280:H11–6. (PMID: 10.1152/ajpheart.2001.280.1.H1111123212)
Bai Y, Chen HY, Zong GJ, Jiang HB, Li WP, Wu H, Zhao XX, Qin YW. Percutaneous establishment of tricuspid regurgitation: an experimental model for transcatheter tricuspid valve replacement. Chin Med J (Engl). 2010;123:806–9. (PMID: 20497668)
Malinowski M, Proudfoot AG, Langholz D, Eberhart L, Brown M, Schubert H, Wodarek J, Timek TA. Large animal model of functional tricuspid regurgitation in pacing induced end-stage heart failure. Interact Cardiovasc Thorac Surg. 2017;24:905–10. (PMID: 10.1093/icvts/ivx01228329164)
Gaweda B, Iwasieczko A, Gaddam M, Bush JD, MacDougal B, Timek TA. Chronic ovine model of right ventricular failure and functional tricuspid regurgitation. J Vis Exp. 2023;17(193).  https://doi.org/10.3791/64529.
Spinner EM, Shannon P, Buice D, Jimenez JH, Veledar E, Del Nido PJ, Adams DH, Yoganathan AP. In vitro characterization of the mechanisms responsible for functional tricuspid regurgitation. Circulation. 2011;124:920–9. (PMID: 10.1161/CIRCULATIONAHA.110.00389721810662)
Maisano F, Reser D, Pavicevic J, Guidotti A, Denti P, Taramasso M, Addis A, Cesarovic N, Emmert MY, Nietlispach F, Swain J, Falk V, Leon M. A translational "humanised" porcine model for transcatheter mitral valve interventions: the neo inferior vena cava approach. EuroIntervention. 2015;11:92–5. (PMID: 10.4244/EIJY15M02_0425671425)
معلومات مُعتمدة: R01 HL133667 United States HL NHLBI NIH HHS; R01 HL135145 United States HL NHLBI NIH HHS; R01 HL140325 United States HL NHLBI NIH HHS
فهرسة مساهمة: Keywords: Right heart failure; Transcatheter tricuspid valve repair; Transcatheter tricuspid valve replacement; Tricuspid regurgitation
تواريخ الأحداث: Date Created: 20230824 Date Completed: 20240426 Latest Revision: 20240430
رمز التحديث: 20240430
DOI: 10.1007/s12265-023-10424-3
PMID: 37615887
قاعدة البيانات: MEDLINE
الوصف
تدمد:1937-5395
DOI:10.1007/s12265-023-10424-3