دورية أكاديمية

Biodiesel Production from the Marine Alga Nannochloropsis oceanica Grown on Yeast Wastewater and the Effect on Its Biochemical Composition and Gene Expression.

التفاصيل البيبلوغرافية
العنوان: Biodiesel Production from the Marine Alga Nannochloropsis oceanica Grown on Yeast Wastewater and the Effect on Its Biochemical Composition and Gene Expression.
المؤلفون: Senousy HH; Botany and Microbiology Department, Faculty of Science, Cairo University, Giza 12613, Egypt., El-Sheekh MM; Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt., Khairy HM; National Institute of Oceanography and Fisheries (NIOF), Cairo 11516, Egypt., El-Sayed HS; National Institute of Oceanography and Fisheries (NIOF), Cairo 11516, Egypt., Mahmoud GA; Botany and Microbiology Department, Faculty of Science, Assuit University, Assuit 71516, Egypt., Hamed AA; Botany and Microbiology Department, Faculty of Science, Cairo University, Giza 12613, Egypt.
المصدر: Plants (Basel, Switzerland) [Plants (Basel)] 2023 Aug 08; Vol. 12 (16). Date of Electronic Publication: 2023 Aug 08.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: MDPI AG Country of Publication: Switzerland NLM ID: 101596181 Publication Model: Electronic Cited Medium: Print ISSN: 2223-7747 (Print) Linking ISSN: 22237747 NLM ISO Abbreviation: Plants (Basel) Subsets: PubMed not MEDLINE
أسماء مطبوعة: Original Publication: Basel, Switzerland : MDPI AG, [2012]-
مستخلص: Microalgae-based biodiesel synthesis is currently not commercially viable due to the high costs of culture realizations and low lipid yields. The main objective of the current study was to determine the possibility of growing Nannochloropsis oceanica on Saccharomyces cerevisiae yeast wastewater for biodiesel generation at an economical rate. N. oceanica was grown in Guillard F/2 synthetic medium and three dilutions of yeast wastewater (1, 1.25, and 1.5%). Biodiesel properties, in addition to carbohydrate, protein, lipid, dry weight, biomass, lipid productivity, amino acids, and fatty acid methyl ester (FAMEs) content, were analyzed and the quality of the produced biodiesel is assessed. The data revealed the response of N. oceanica to nitrogen-deficiency in the three dilutions of yeast wastewater. N. oceanica in Y2 (1.25%) yeast wastewater dilution exhibited the highest total carbohydrate and lipid percentages (21.19% and 41.97%, respectively), and the highest lipid productivity (52.46 mg L -1 day -1 ) under nitrogen deficiency in yeast wastewater. The fatty acids profile shows that N. oceanica cultivated in Y2 (1.25%) wastewater dilution provides a significant level of TSFA (47.42%) and can be used as a feedstock for biodiesel synthesis. In addition, N. oceanica responded to nitrogen shortage in wastewater dilutions by upregulating the gene encoding delta-9 fatty acid desaturase (Δ9FAD). As a result, the oleic and palmitoleic acid levels increased in the fatty acid profile of Y2 yeast wastewater dilution, highlighting the increased activity of Δ9FAD enzyme in transforming stearic acid and palmitic acid into oleic acid and palmitoleic acid. This study proved that the Y2 (1.25%) yeast wastewater dilution can be utilized as a growth medium for improving the quantity of specific fatty acids and lipid productivity in N. oceanica that affect biodiesel quality to satisfy global biodiesel requirements.
References: J Biotechnol. 2017 Sep 10;257:47-57. (PMID: 27914890)
Can J Microbiol. 1962 Apr;8:229-39. (PMID: 13902807)
Mar Drugs. 2020 Feb 18;18(2):. (PMID: 32085426)
World J Microbiol Biotechnol. 2016 Mar;32(3):51. (PMID: 26874538)
Front Bioeng Biotechnol. 2022 Sep 07;10:904046. (PMID: 36159694)
Am J Clin Nutr. 2005 Oct;82(4):747-50. (PMID: 16210702)
Chemosphere. 2021 Jun;273:128578. (PMID: 33066970)
Bioresour Technol. 2011 Jan;102(1):71-81. (PMID: 20674344)
PLoS Genet. 2014 Jan;10(1):e1004094. (PMID: 24415958)
Biotechnol Biofuels. 2014 Jan 30;7(1):17. (PMID: 24479413)
Plant J. 2008 May;54(4):621-39. (PMID: 18476868)
Biotechnol Biofuels. 2020 Jun 18;13:109. (PMID: 32565907)
Front Plant Sci. 2023 Jun 02;14:1026063. (PMID: 37332715)
Planta. 2012 Dec;236(6):1665-76. (PMID: 22855030)
J Appl Phycol. 2016;28(1):53-62. (PMID: 26869745)
Biotechnol Biofuels. 2020 Apr 21;13:78. (PMID: 32336989)
Phytochem Rev. 2022 Jan 23;:1-28. (PMID: 35095355)
Can J Biochem Physiol. 1959 Aug;37(8):911-7. (PMID: 13671378)
PLoS One. 2021 Jun 18;16(6):e0252904. (PMID: 34143815)
Bioresour Technol. 2015 Oct;193:469-76. (PMID: 26162525)
Chemosphere. 2021 Jan;262:127939. (PMID: 33182115)
Bioresour Technol. 2010 Jul;101(14):5494-500. (PMID: 20202827)
Front Nutr. 2022 Feb 23;9:851402. (PMID: 35284441)
Front Microbiol. 2022 Jul 29;13:970028. (PMID: 35966657)
Biotechnol Biofuels. 2020 Jan 07;13:4. (PMID: 31921352)
Bioresour Technol. 2011 Jan;102(1):17-25. (PMID: 20594826)
Bioresour Technol. 2014 Feb;154:297-304. (PMID: 24412481)
Biotechnol Biofuels. 2019 Feb 11;12:28. (PMID: 30792816)
Bioresour Technol. 2009 Jan;100(1):261-8. (PMID: 18693011)
Plant Physiol. 2010 Mar;152(3):1598-610. (PMID: 20061450)
Environ Sci Pollut Res Int. 2019 Jun;26(18):18520-18532. (PMID: 31049862)
Bioresour Technol. 2014 Oct;169:588-595. (PMID: 25103036)
Plant Physiol. 2010 Dec;154(4):1737-52. (PMID: 20935180)
J Exp Bot. 2021 Feb 2;72(2):510-524. (PMID: 33005924)
Biotechnol Biofuels. 2017 Jan 3;10:8. (PMID: 28070221)
Metab Eng. 2010 Jul;12(4):387-91. (PMID: 20172043)
J Biotechnol. 2012 Nov 30;162(1):28-39. (PMID: 22750092)
Sci Rep. 2019 Mar 14;9(1):4540. (PMID: 30872742)
Sci Total Environ. 2020 Feb 20;704:135303. (PMID: 31818584)
Biotechnol Biofuels. 2017 Mar 9;10:60. (PMID: 28293290)
FEBS J. 2008 Jun;275(11):2765-78. (PMID: 18422644)
Bioresour Technol. 2011 Apr;102(8):5138-44. (PMID: 21353532)
Plant Cell. 2014 Apr 1;26(4):1645-1665. (PMID: 24692423)
Methods. 2001 Dec;25(4):402-8. (PMID: 11846609)
J Phycol. 2019 Aug;55(4):830-839. (PMID: 30916786)
J Phycol. 2000 Jun;36(3):510-522. (PMID: 29544004)
Environ Sci Ecotechnol. 2022 Sep 08;13:100205. (PMID: 36247722)
Bioresour Technol. 2018 Oct;265:407-414. (PMID: 29933188)
BMC Genomics. 2020 Feb 3;21(1):115. (PMID: 32013861)
Bioresour Technol. 2011 Jan;102(1):35-42. (PMID: 20674341)
Bioresour Technol. 2010 Jun;101(11):3801-7. (PMID: 20117928)
Mar Drugs. 2013 Oct 30;11(11):4246-66. (PMID: 24177672)
Int J Mol Sci. 2016 Jul 16;17(7):. (PMID: 27438826)
Biotechnol Adv. 2007 May-Jun;25(3):294-306. (PMID: 17350212)
Biotechnol Biofuels Bioprod. 2023 Jan 19;16(1):12. (PMID: 36658609)
J Biol Chem. 1951 Nov;193(1):265-75. (PMID: 14907713)
R Soc Open Sci. 2018 Nov 28;5(11):181236. (PMID: 30564413)
J Biol Chem. 2012 May 4;287(19):15811-25. (PMID: 22403401)
فهرسة مساهمة: Keywords: N deficiency; N/P ratio; Nannochloropsis oceanica; biodiesel production; carbohydrate; lipid; yeast wastewater; Δ9FAD gene expression
تواريخ الأحداث: Date Created: 20230826 Latest Revision: 20230829
رمز التحديث: 20231215
مُعرف محوري في PubMed: PMC10459201
DOI: 10.3390/plants12162898
PMID: 37631110
قاعدة البيانات: MEDLINE
الوصف
تدمد:2223-7747
DOI:10.3390/plants12162898