دورية أكاديمية

Haloperidol alters neurotrophic factors and epigenetic parameters in an animal model of schizophrenia induced by ketamine.

التفاصيل البيبلوغرافية
العنوان: Haloperidol alters neurotrophic factors and epigenetic parameters in an animal model of schizophrenia induced by ketamine.
المؤلفون: Valvassori SS; Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Santa Catarina, Brazil., da Rosa RT; Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Santa Catarina, Brazil., Dal-Pont GC; Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Santa Catarina, Brazil., Varela RB; Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Santa Catarina, Brazil., Mastella GA; Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Santa Catarina, Brazil., Daminelli T; Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Santa Catarina, Brazil., Fries GR; Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, USA.; Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, USA., Quevedo J; Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Santa Catarina, Brazil.; Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, USA.; Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, USA.; Neuroscience Graduate Program, University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas, USA., Zugno AI; Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Santa Catarina, Brazil.
المصدر: International journal of developmental neuroscience : the official journal of the International Society for Developmental Neuroscience [Int J Dev Neurosci] 2023 Dec; Vol. 83 (8), pp. 691-702. Date of Electronic Publication: 2023 Aug 27.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: John Wiley & Sons, Inc Country of Publication: United States NLM ID: 8401784 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1873-474X (Electronic) Linking ISSN: 07365748 NLM ISO Abbreviation: Int J Dev Neurosci Subsets: MEDLINE
أسماء مطبوعة: Publication: 2020- : Hoboken, NJ : John Wiley & Sons, Inc.
Original Publication: Oxford : New York : Pergamon Press, c1983-
مواضيع طبية MeSH: Schizophrenia*/chemically induced , Schizophrenia*/drug therapy , Schizophrenia*/genetics , Ketamine*/toxicity, Humans ; Rats ; Animals ; Haloperidol/pharmacology ; Brain-Derived Neurotrophic Factor/genetics ; Glial Cell Line-Derived Neurotrophic Factor ; Nerve Growth Factor/genetics ; Disease Models, Animal ; Epigenesis, Genetic
مستخلص: This study aimed to evaluate Haloperidol's (Hal) effects on the behavioral, neurotrophic factors, and epigenetic parameters in an animal model of schizophrenia (SCZ) induced by ketamine (Ket). Injections of Ket or saline were administered intraperitoneal (once a day) between the 1st and 14th days of the experiment. Water or Hal was administered via gavage between the 8th and 14th experimental days. Thirty minutes after the last injection, the animals were subjected to behavioral analysis. The activity of DNA methyltransferase (DNMT), histone deacetylase (HDAC), and histone acetyltransferase and levels of brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF), neurotrophin-3 (NT-3), and glial-derived neurotrophic factor (GDNF) were evaluated in the frontal cortex, hippocampus, and striatum. Ket increased the covered distance and time spent in the central area of the open field, and Hal did not reverse these behavioral alterations. Significant increases in the DNMT and HDAC activities were detected in the frontal cortex and striatum from rats that received Ket, Hal, or a combination thereof. Besides, Hal per se increased the activity of DNMT and HDAC in the hippocampus of rats. Hal per se or the association of Ket plus Hal decreased BDNF, NGF, NT-3, and GDNF, depending on the brain region and treatment regimen. The administration of Hal can alter the levels of neurotrophic factors and the activity of epigenetic enzymes, which can be a factor in the development of effect collateral in SCZ patients. However, the precise mechanisms involved in these alterations are still unclear.
(© 2023 International Society for Developmental Neuroscience.)
References: Abekawa, T., Ito, K., Nakagawa, S., Nakato, Y., & Koyama, T. (2011). Effects of aripiprazole and Haloperidol on progression to schizophrenia-like behavioral abnormalities and apoptosis in rodents. Schizophrenia Research, 125(1), 77-87. https://doi.org/10.1016/j.schres.2010.08.011.
Afonso-Grunz, F., & Müller, S. (2015). Principles of miRNA-mRNA interactions: Beyond sequence complementarity. Cellular and Molecular Life Sciences, 72, 3127-3141. https://doi.org/10.1007/s00018-015-1922-2.
Anier, K., Urb, M., Kipper, K., Herodes, K., Timmusk, T., Zharkovsky, A., & Kalda, A. (2018). Cocaine-induced epigenetic DNA modification in mouse addiction-specific and non-specific tissues. Neuropharmacology, 139, 13-25. https://doi.org/10.1016/j.neuropharm.2018.06.036.
Bahari-Javan, S., Varbanov, H., Halder, R., Benito, E., Kaurani, L., Burkhardt, S., Anderson-Schmidt, H., Anghelescu, I., Budde, M., Stilling, R. M., Costa, J., Medina, J., Dietrich, D. E., Figge, C., Folkerts, H., Gade, K., Heilbronner, U., Koller, M., Konrad, C., … Fischer, A. (2017). HDAC1 links early life stress to schizophrenia-like phenotypes. Proceedings of the National Academy of Sciences of the United States of America, 114(23), E4686-E4694. https://doi.org/10.1073/pnas.1613842114.
Barch, D. M., & Ceaser, A. (2012). Cognition in schizophrenia: Core psychological and neural mechanisms. Trends in Cognitive Sciences, 16, 27-34. https://doi.org/10.1016/j.tics.2011.11.015.
Becker, A., & Grecksch, G. (2004). Ketamine-induced changes in rat behavior: A possible animal model of schizophrenia. Test of predictive validity. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 28, 1267-1277. https://doi.org/10.1016/j.pnpbp.2004.06.019.
Becker, A., Peters, B., Schroeder, H., Mann, T., Huether, G., & Grecksch, G. (2003). Ketamine-induced changes in rat behaviour: A possible animal model of schizophrenia. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 27, 687-700. https://doi.org/10.1016/j.pnpbp.2004.06.019.
Ben-Azu, B., Aderibigbe, A. O., Ajayi, A. M., Eneni, A. O., Umukoro, S., & Iwalewa, E. O. (2018). Involvement of GABAergic, BDNF and Nox-2 mechanisms in the prevention and reversal of ketamine-induced schizophrenia-like behavior by morin in mice. Brain Research Bulletin, 139, 292-306. https://doi.org/10.1016/j.brainresbull.2018.03.006.
Ben-Azu, B., Aderibigbe, A. O., Eneni, A. E. O., Ajayi, A. M., Umukoro, S., & Iwalewa, E. O. (2018). Morin attenuates neurochemical changes and increased oxidative/nitrergic stress in brains of mice exposed to ketamine: Prevention and reversal of schizophrenia-like symptoms. Neurochemical Research, 43, 1745-1755. https://doi.org/10.1007/s11064-018-2590-z.
Benes, F. M., Lim, B., Matzilevich, D., Walsh, J. P., Subburaju, S., & Minns, M. (2007). Regulation of the GABA cell phenotype in hippocampus of schizophrenics and bipolars. Proceedings of the National Academy of Sciences of the United States of America, 104, 10164-10169. https://doi.org/10.1073/pnas.0703806104.
Buhagiar, K., Ghafouri, M., & Dey, M. (2019). Oral antipsychotic prescribing and association with neighbourhood-level socioeconomic status: Analysis of time trend of routine primary care data in England, 2011-2016. Social Psychiatry and Psychiatric Epidemiology, 55, 165-173. https://doi.org/10.1007/s00127-019-01793-9.
Castrén, E. (2014). Neurotrophins and psychiatric disorders. Handbook of Experimental Pharmacology, 220, 461-479. https://doi.org/10.1007/978-3-642-45106-5_17.
Charostad, J., Astani, A., Goudarzi, H., & Faghihloo, E. (2019). DNA methyltransferases in virus-associated cancers. Reviews in Medical Virology, 29(2), e2022. https://doi.org/10.1002/rmv.2022.
Chen, L. W., Zhang, J. P., Kwok-Yan Shum, D., & Chan, Y. S. (2006). Localization of nerve growth factor, neurotrophin-3, and glial cell line-derived neurotrophic factor in nestin-expressing reactive astrocytes in the caudate-putamen of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated C57/Bl mice. The Journal of Comparative Neurology, 497(6), 898-909. https://doi.org/10.1002/cne.21014.
Choi, M., Lee, S. H., Wang, S. E., Ko, S. Y., Song, M., Choi, J. S., Kim, Y. S., Duman, R. S., & Son, H. (2015). Ketamine produces antidepressant-like effects through phosphorylation-dependent nuclear export of histone deacetylase 5 (HDAC5) in rats. Proceedings of the National Academy of Sciences of the United States of America, 112(51), 15755-15760. https://doi.org/10.1073/pnas.1513913112.
Cholewa-Waclaw, J., Bird, A., von Schimmelmann, M., Schaefer, A., Yu, H., Song, H., Madabhushi, R., & Tsai, L.-H. (2016). The role of epigenetic mechanisms in regulating gene expression in the nervous system. The Journal of Neuroscience, 36, 11427-11434. https://doi.org/10.1523/JNEUROSCI.2492-16.2016.
Citrome, L. (2011). Lurasidone for schizophrenia: A review of the efficacy and safety profile for this newly approved second-generation antipsychotic. International Journal of Clinical Practice, 65(2), 189-210. https://doi.org/10.1111/j.1742-1241.2010.02587.x.
de Oliveira, L., Spiazzi, C. M., Bortolin, T., Canever, L., Petronilho, F., Mina, F. G., Dal-Pizzol, F., Quevedo, J., & Zugno, A. I. (2009). Different sub-anesthetic doses of ketamine increase oxidative stress in the brain of rats. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 33(6), 1003-1008. https://doi.org/10.1016/j.pnpbp.2009.05.010.
Favalli, G., Li, J., Belmonte-de-Abreu, P., Wong, A. H., & Daskalakis, Z. J. (2012). The role of BDNF in the pathophysiology and treatment of schizophrenia. Journal of Psychiatric Research, 46(1), 1-11. https://doi.org/10.1016/j.jpsychires.2011.09.022.
Feng, J., Chang, H., Li, E., & Fan, G. (2005). Dynamic expression of de novo DNA methyltransferases DNMT3A and DNMT3B in the central nervous system. Journal of Neuroscience Research, 79, 734-746. https://doi.org/10.1002/jnr.20404.
Fernø, J., Raeder, M., Vik-Mo, A., Skrede, S., Glambek, M., Tronstad, K., Breilid, H., Løvlie, R., Berge, R. K., Stansberg, C., & Steen, V. M. (2005). Antipsychotic drugs activate SREBP-regulated expression of lipid biosynthetic genes in cultured human glioma cells: A novel mechanism of action? The Pharmacogenomics Journal, 5(5), 298-304. https://doi.org/10.1038/sj.tpj.6500323.
Green, M. (1996). What are the functional consequences of neurocognitive deficits in schizophrenia? The American Journal of Psychiatry, 153, 321-330. https://doi.org/10.1176/ajp.153.3.321.
Guidotti, A., Auta, J., Davis, J. M., Dong, E., Grayson, D. R., Veldic, M., Zhang, X., & Costa, E. (2005). GABAergic dysfunction in schizophrenia: New treatment strategies on the horizon. Psychopharmacology (Berl), 180(2), 191-205. https://doi.org/10.1007/s00213-005-2212-8.
Guillin, O., Demily, C., & Thibaut, F. (2007). Brain-derived neurotrophic factor in schizophrenia and its relation with dopamine. International Review of Neurobiology, 78, 377-395. https://doi.org/10.1016/S0074-7742(06)78012-6.
Guo, J. U., Ma, D. K., Mo, H., Ball, M. P., Jang, M.-H., Bonaguidi, M. A., Balazer, J. A., Eaves, H. L., Xie, B., Ford, E., Zhang, K., Ming, G., Gao, Y., & Song, H. (2011). Neuronal activity modifies the DNA methylation landscape in the adult brain. Nature Neuroscience, 14, 1345-1351. https://doi.org/10.1038/nn.2900.
Harrison, P. J. (2015). Recent genetic findings in schizophrenia and their therapeutic relevance. Journal of Psychopharmacology, 29, 85-96. https://doi.org/10.1177/0269881114553647.
Hossain, M. S., Oomura, Y., & Katafuchi, T. (2018). Glucose can epigenetically alter the gene expression of neurotrophic factors in the murine brain cells. Molecular Neurobiology, 55(4), 3408-3425. https://doi.org/10.1007/s12035-017-0578-3.
Howes, O., McCutcheon, R., & Stone, J. (2015). Glutamate and dopamine in schizophrenia: An update for the 21st century. Journal of Psychopharmacology, 29(2), 97-115. https://doi.org/10.1177/0269881114563634.
Imre, G., Fokkema, D. S., den Boer, J. A., & ter Horst, G. J. (2006). Dose-response characteristics of ketamine effect on locomotion, cognitive function and central neuronal activity. Brain Research Bulletin, 69, 338-345. https://doi.org/10.1016/j.brainresbull.2006.01.010.
Inoue, A., Seto, M., Sugita, S., Hide, I., Hirose, T., Koga, N., Kikuchi, T., & Nakata, Y. (1998). Differential effects on D 2 dopamine receptor and prolactin gene expression by haloperidol and aripiprazole in the rat pituitary. Molecular Brain Research, 55(2), 285-292. https://doi.org/10.1016/s0169-328x(98)00009-6.
Jaffe, A. E., & Kleinman, J. E. (2016). Genetic and epigenetic analysis of schizophrenia in blood-a no-brainer? Genome Medicine, 8(1), 96. https://doi.org/10.1186/s13073-016-0354-4.
Jindal, N., Banik, A., Prabhakar, S., Vaiphie, K., & Anand, A. (2017). Alteration of neurotrophic factors after transplantation of bone marrow derived Lin-ve stem cell in NMDA-induced mouse model of retinal degeneration. Journal of Cellular Biochemistry, 118(7), 1699-1711. https://doi.org/10.1002/jcb.25827.
Keefe, R. S., Sweeney, J. A., Gu, H., Hamer, R. M., Perkins, D. O., McEvoy, J. P., & Lieberman, J. A. (2007). Effects of olanzapine, quetiapine, and risperidone on neurocognitive function in early psychosis: A randomized, double-blind 52-week comparison. The American Journal of Psychiatry, 164(7), 1061-1071. https://doi.org/10.1176/ajp.2007.164.7.1061.
Kim, J. H., Kim, S. H., Cho, S. R., Lee, J. Y., Kim, J. H., Baek, A., & Jung, H. S. (2016). The modulation of neurotrophin and epigenetic regulators: Implication for astrocyte proliferation and neuronal cell apoptosis after spinal cord injury. Annals of Rehabilitation Medicine, 40(4), 559-567. https://doi.org/10.5535/arm.2016.40.4.559.
Kohrs, R., & Durieux, M. E. (1998). Ketamine: Teaching an old drug new tricks. Anesthesia and Analgesia, 87, 1186-1193. https://doi.org/10.1097/00000539-199811000-00039.
Lang, U. E., Puls, I., Müller, D. J., Strutz-Seebohm, N., & Gallinat, J. (2007). Molecular mechanisms of schizophrenia. Cellular Physiology and Biochemistry, 20, 687-702. https://doi.org/10.1159/000110430.
Laruelle, M., Kegeles, L. S., & Abi-Dargham, A. (2003). Glutamate, dopamine, and schizophrenia: From pathophysiology to treatment. Annals of the New York Academy of Sciences, 1003, 138-158. https://doi.org/10.1196/annals.1300.063.
Leucht, S., Cipriani, A., Spineli, L., Mavridis, D., Orey, D., Richter, F., Samara, M., Barbui, C., Engel, R. R., Geddes, J. R., Kissling, W., Stapf, M. P., Lässig, B., Salanti, G., & Davis, J. M. (2013). Comparative efficacy and tolerability of 15 antipsychotic drugs in schizophrenia: A multiple-treatments meta-analysis. Lancet, 382(9896), 951-962. https://doi.org/10.1016/S0140-6736(13)60733-3. Erratum in: (2013). Lancet, 382(9896), 940.
Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry, 193(1), 265-275.
MacGibbon, G., Lawlor, P., Bravo, R., & Dragunow, M. (1994). Clozapine and haloperidol produce a differential pattern of immediate early gene expression in rat caudate-putamen, nucleus accumbens, lateral septum and islands of Calleja. Molecular Brain Research, 23(1), 21-32. https://doi.org/10.1016/0169-328x(94)90207-0.
Martinowich, K., Hattori, D., Wu, H., Fouse, S., He, F., Hu, Y., Fan, G., & Sun, Y. E. (2003). DNA methylation-related chromatin remodeling in activity-dependent BDNF gene regulation. Science, 302, 890-893. https://doi.org/10.1126/science.1090842.
Matrisciano, F., Panaccione, I., Grayson, D. R., Nicoletti, F., & Guidotti, A. (2016). Metabotropic glutamate 2/3 receptors and epigenetic modifications in psychotic disorders: A review. Current Neuropharmacology, 14, 41-47. https://doi.org/10.2174/1570159x13666150713174242.
Matrisciano, F., Tueting, P., Dalal, I., Kadriu, B., Grayson, D. R., Davis, J. M., Nicoletti, F., & Guidotti, A. (2013). Epigenetic modifications of GABAergic interneurons are associated with the schizophrenia like phenotype induced by prenatal stress in mice. Neuropharmacology, 68, 184-194. https://doi.org/10.1016/j.neuropharm.2012.04.013.
Matrisciano, F., Tueting, P., Maccari, S., Nicoletti, F., & Guidotti, A. (2012). Pharmacological activation of group-II metabotropic glutamate receptors corrects a schizophrenia-like phenotype induced by prenatal stress in mice. Neuropsychopharmacology, 37, 929-938. https://doi.org/10.1038/npp.2011.274.
McGowan, P. O., & Szyf, M. (2010). The epigenetics of social adversity in early life: Implications for mental health outcomes. Neurobiology of Disease, 39, 66-72. https://doi.org/10.1016/j.nbd.2009.12.026.
Meaney, M. J., & Szyf, M. (2005). Maternal care as a model for experience-dependent chromatin plasticity? Trends in Neurosciences, 28, 456-463. https://doi.org/10.1016/j.tins.2005.07.006.
Meltzer, H. Y. (2013). Update on typical and atypical antipsychotic drugs. Annual Review of Medicine, 64, 393-406. https://doi.org/10.1146/annurev-med-050911-161504.
Meltzer, H. Y., Horiguchi, M., & Massey, B. W. (2011). The role of serotonin in the NMDA receptor antagonist models of psychosis and cognitive impairment. Psychopharmacology, 2011(213), 289-305. https://doi.org/10.1007/s00213-010-2137-8.
Millier, A., Schmidt, U., Angermeyer, M. C., Chauhan, D., Murthy, V., Toumi, M., & Cadi-Soussi, N. (2014). Humanistic burden in schizophrenia: A literature review. Journal of Psychiatric Research, 54, 85-93. https://doi.org/10.1016/j.jpsychires.2014.03.021.
Minet-Ringuet, J., Even, P., Valet, P., Carpene, C., Visentin, V., Prevot, D., Daviaud, D., Quignard-Boulange, A., Tomé, D., & de Beaurepaire, R. (2007). Alterations of lipid metabolism and gene expression in rat adipocytes during chronic olanzapine treatment. Molecular Psychiatry, 12(6), 562-571. https://doi.org/10.1038/sj.mp.4001948.
Mitchelmore, C., & Gede, L. (2014). Brain derived neurotrophic factor: Epigenetic regulation in psychiatric disorders. Brain Research, 1586, 162-172. https://doi.org/10.1016/j.brainres.2014.06.037.
Monteleone, P., Cascino, G., Monteleone, A. M., Rocca, P., Rossi, A., Bertolino, A., Aguglia, E., Amore, M., Collantoni, E., Corrivetti, G., Cuomo, A., Bellomo, A., D'Ambrosio, E., Dell'Osso, L., Frascarelli, M., Giordano, G. M., Giuliani, L., Marchesi, C., Montemagni, C., … Italian Network for Research on Psychoses. (2021). Prevalence of antipsychotic-induced extrapyramidal symptoms and their association with neurocognition and social cognition in outpatients with schizophrenia in the "real-life". Progress in Neuro-Psychopharmacology and Biological Psychiatry, 109, 110250. https://doi.org/10.1016/j.pnpbp.2021.110250.
Moore, L. D., Le, T., & Fan, G. (2013). DNA methylation and its basic function. Neuropsychopharmacology, 38, 23-38. https://doi.org/10.1038/npp.2012.112.
Need, A. C., & Goldstein, D. B. (2014). Schizophrenia genetics comes of age. Neuron, 83, 760-763. https://doi.org/10.1016/j.neuron.2014.08.015.
Newport, D. J., Carpenter, L. L., McDonald, W. M., Potash, J. B., Tohen, M., & Nemeroff, C. B. (2015). APA council of research task force on novel biomarkers and treatments. Ketamine and other NMDA antagonists: Early clinical trials and possible mechanisms in depression. The American Journal of Psychiatry, 172(10), 950-966. https://doi.org/10.1176/appi.ajp.2015.15040465.
Peng, S., Li, W., Lv, L., Zhang, Z., & Zhan, X. (2018). BDNF as a biomarker in diagnosis and evaluation of treatment for schizophrenia and depression. Discovery Medicine, 26(143), 127-136.
Ruzicka, W. B., Zhubi, A., Veldic, M., Grayson, D. R., Costa, E., & Guidotti, A. (2007). Selective epigenetic alteration of layer I GABAergic neurons isolated from prefrontal cortex of schizophrenia patients using laserassisted microdissection. Molecular Psychiatry, 12, 385-397. https://doi.org/10.1038/sj.mp.4001954.
Safari, R., Tunca, Z., Özerdem, A., Ceylan, D., Yalçın, Y., & Sakizli, M. (2017). Glial cell-derived neurotrophic factor gene polymorpisms affect severity and functionality of bipolar disorder. Journal of Integrative Neuroscience, 16(4), 471-481. https://doi.org/10.3233/JIN-170031.
Scola, G., & Andreazza, A. C. (2015). The role of neurotrophins in bipolar disorder Progress. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 56, 122-128. https://doi.org/10.1016/j.pnpbp.2014.08.013.
Seeman, P., Lee, T., Chau-Wong, M., & Wong, K. (1976). Antipsychotic drug doses and neuroleptic/dopamine receptors. Nature, 261, 717-719. https://doi.org/10.1038/261717a0.
Shorter, K. R., & Miller, B. H. (2015). Epigenetic mechanisms in schizophrenia. Progress in Biophysics and Molecular Biology, 118, 1-7. https://doi.org/10.1016/j.pbiomolbio.2015.04.008.
Swathy, B., & Banerjee, M. (2017). Understanding epigenetics of schizophrenia in the backdrop of its antipsychotic drug therapy. Epigenomics, 9(5), 721-736. https://doi.org/10.2217/epi-2016-0106.
Tamminga, C. A., & Medoff, D. R. (2000). The biology of schizophrenia. Dialogues in Clinical Neuroscience, 2, 339-348. https://doi.org/10.31887/DCNS.2000.2.4/ctamminga.
Toda, M., & Abi-Dargham, A. (2007). Dopamine hypothesis of schizophrenia: Making sense of it all. Current Psychiatry Reports, 9(4), 329-336. https://doi.org/10.1007/s11920-007-0041-7.
Tyler, M. W., Zaldivar-Diez, J., & Haggarty, S. J. (2017). Classics in chemical neuroscience: Haloperidol. ACS Chemical Neuroscience, 8(3), 444-453. https://doi.org/10.1021/acschemneuro.7b00018.
Valvassori, S. S., Dal-Pont, G. C., Steckert, A. V., Varela, R. B., Lopes-Borges, J., Mariot, E., Resende, W. R., Arent, C. O., Carvalho, A. F., & Quevedo, J. (2016). Sodium butyrate has an antimanic effect and protects the brain against oxidative stress in an animal model of mania induced by ouabain. Psychiatry Research, 235, 154-159. https://doi.org/10.1016/j.psychres.2015.11.017.
Valvassori, S. S., Mariot, E., Varela, R. B., Bavaresco, D. V., Dal-Pont, G. C., Ferreira, C. L., Andersen, M. L., Tye, S. J., & Quevedo, J. (2019). The role of neurotrophic factors in manic-, anxious- and depressive-like behaviors induced by amphetamine sensitization: Implications to the animal model of bipolar disorder. Journal of Affective Disorders, 245, 1106-1113. https://doi.org/10.1016/j.jad.2018.10.370.
Valvassori, S. S., Resende, W. R., Varela, R. B., Arent, C. O., Gava, F. F., Peterle, B. R., Dal-Pont, G. C., Carvalho, A. F., Andersen, M. L., & Quevedo, J. (2018). The effects of histone deacetylase inhibition on the levels of cerebral cytokines in an animal model of mania induced by dextroamphetamine. Molecular Neurobiology, 55(2), 1430-1439. https://doi.org/10.1007/s12035-017-0384-y.
Valvassori, S. S., Varela, R. B., Arent, C. O., Dal-Pont, G. C., Bobsin, T. S., Budni, J., Reus, G. Z., & Quevedo, J. (2014). Sodium butyrate functions as an antidepressant and improves cognition with enhanced neurotrophic expression in models of maternal deprivation and chronic mild stress. Current Neurovascular Research, 11(4), 359-366. https://doi.org/10.2174/1567202611666140829162158.
Wiener, C. D., de Mello Ferreira, S., Moreira, F. P., Bittencourt, G., de Oliveira, J. F., Molina, M. L., Jansen, K., de Mattos Souza, L. D., Rizzato, D. L., Portela, L. V., da Silva, R. A., & Oses, J. P. (2015). Serum levels of nerve growth factor (NGF) in patients with major depression disorder and suicide risk. Journal of Affective Disorders, 184, 245-248. https://doi.org/10.1016/j.jad.2015.05.067.
Wiener, C. D., Molina, M. L., Moreira, F. P., dos Passos, M. B., Jansen, K., da Silva, R. A., de Mattos Souza, L. D., & Oses, J. P. (2017). Brief psychoeducation for bipolar disorder: Evaluation of trophic factors serum levels in young adults. Psychiatry Research, 257, 367-371. https://doi.org/10.1016/j.psychres.2017.07.062.
Wu, X., Chen, P. S., Dallas, S., Wilson, B., Block, M. L., Wang, C. C., Kinyamu, H., Lu, N., Gao, X., Leng, Y., Chuang, D. M., Zhang, W., Lu, R. B., & Hong, J. S. (2008). Histone deacetylase inhibitors up-regulate astrocyte GDNF and BDNF gene transcription and protect dopaminergic neurons. The International Journal of Neuropsychopharmacology, 11(8), 1123-1134. https://doi.org/10.1017/S1461145708009024.
Yadav, M., Parle, M., Jindal, D. K., & Sharma, N. (2018). Potential effect of spermidine on GABA, dopamine, acetylcholinesterase, oxidative stress and proinflammatory cytokines to diminish ketamine-induced psychotic symptoms in rats. Biomedicine & Pharmacotherapy, 98, 207-213. https://doi.org/10.1016/j.biopha.2017.12.016.
Zakharyan, R., Atshemyan, S., Gevorgyan, A., & Boyajyan, A. (2014). Nerve growth factor and its receptor in schizophrenia. BBA Clinical, 1, 24-29. https://doi.org/10.1016/j.bbacli.2014.05.001.
Zhubi, A., Veldic, M., Puri, N. V., Kadriu, B., Caruncho, H., Loza, I., Sershen, H., Lajtha, A., Smith, R. C., Guidotti, A., Davis, J. M., & Costa, E. (2009). An upregulation of DNA-methyltransferase 1 and 3a expressed in telencephalic GABAergic neurons of schizophrenia patients is also detected in peripheral blood lymphocytes. Schizophrenia Research, 111, 115-122. https://doi.org/10.1016/j.schres.2009.03.020.
Zugno, A. I., Canever, L., Heylmann, A. S., Wessler, P. G., Steckert, A., Mastella, G. A., de Oliveira, M. B., Damázio, L. S., Pacheco, F. D., Calixto, O. P., Pereira, F. P., Macan, T. P., Pedro, T. H., Schuck, P. F., Quevedo, J., & Budni, J. (2016). Effect of folic acid on oxidative stress and behavioral changes in the animal model of schizophrenia induced by ketamine. Journal of Psychiatric Research, 81, 23-35. https://doi.org/10.1016/j.jpsychires.2016.06.013.
Zurawek, D., Salerno-Kochan, A., Dziedzicka-Wasylewska, M., Nikiforuk, A., Kos, T., & Popik, P. (2018). Changes in the expression of metabotropic glutamate receptor 5 (mGluR5) in a ketamine-based animal model of schizophrenia. Schizophrenia Research, 192, 423-430. https://doi.org/10.1016/j.schres.2017.04.014.
معلومات مُعتمدة: Finance Code 001 Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil; Conselho Nacional de Desenvolvimento Científico e Tecnológico; Fundação de Amparo à Pesquisa e Inovação do Estado de Santa Catarina; Instituto Cérebro e Mente; Universidade do Extremo Sul Catarinense
فهرسة مساهمة: Keywords: epigenetic; haloperidol; neurotrophic factor; schizophrenia
المشرفين على المادة: J6292F8L3D (Haloperidol)
690G0D6V8H (Ketamine)
0 (Brain-Derived Neurotrophic Factor)
0 (Glial Cell Line-Derived Neurotrophic Factor)
9061-61-4 (Nerve Growth Factor)
تواريخ الأحداث: Date Created: 20230827 Date Completed: 20231205 Latest Revision: 20231205
رمز التحديث: 20240628
DOI: 10.1002/jdn.10296
PMID: 37635268
قاعدة البيانات: MEDLINE
الوصف
تدمد:1873-474X
DOI:10.1002/jdn.10296