دورية أكاديمية

Environmental vulnerability assessment of the Doce River basin, southeastern Brazil.

التفاصيل البيبلوغرافية
العنوان: Environmental vulnerability assessment of the Doce River basin, southeastern Brazil.
المؤلفون: Campos JA; Department of Agricultural Engineer, Federal University of Viçosa, Vicosa, 36570-900, Brazil. jasmine.campos@ufv.br., da Silva DD; Department of Agricultural Engineer, Federal University of Viçosa, Vicosa, 36570-900, Brazil., Fernandes Filho EI; Department of Soil and Plant Nutrition, Federal University of Viçosa, Vicosa, 36570-900, Brazil., Pires GF; Department of Agricultural Engineer, Federal University of Viçosa, Vicosa, 36570-900, Brazil., Amorim RSS; Department of Agricultural Engineer, Federal University of Viçosa, Vicosa, 36570-900, Brazil., de Menezes Filho FCM; Department of Civil Engineer, Federal University of Viçosa, Campus Rio Paranaíba, Rio Paranaiba, 38810-000, Brazil., de Melo Ribeiro CB; Department of Environmental and Sanitary Engineer, Federal University of Juiz de Fora, Juiz de Fora, 36036-900, Brazil., Uliana EM; Institute of Agrarian and Environmental Sciences, Federal University of Mato Grosso, Campus Sinop, Sinop, 78557-267, Brazil., Aires URV; Department of Agricultural and Biological Engineering, Mississippi State University, Starkville, 39759, USA.
المصدر: Environmental monitoring and assessment [Environ Monit Assess] 2023 Aug 31; Vol. 195 (9), pp. 1119. Date of Electronic Publication: 2023 Aug 31.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Springer Country of Publication: Netherlands NLM ID: 8508350 Publication Model: Electronic Cited Medium: Internet ISSN: 1573-2959 (Electronic) Linking ISSN: 01676369 NLM ISO Abbreviation: Environ Monit Assess Subsets: MEDLINE
أسماء مطبوعة: Publication: 1998- : Dordrecht : Springer
Original Publication: Dordrecht, Holland ; Boston : D. Reidel Pub. Co., c1981-
مواضيع طبية MeSH: Rivers* , Environmental Monitoring*, Brazil ; Anthropogenic Effects ; Geographic Information Systems
مستخلص: Environmental vulnerability is an important tool to understand the natural and anthropogenic impacts associated with the susceptibility to environmental damage. This study aims to assess the environmental vulnerability of the Doce River basin in Brazil through Multicriteria Decision Analysis based on Geographic Information Systems (GIS-MCDA). Natural factors (slope, elevation, relief dissection, rainfall, pedology, and geology) and anthropogenic factors (distance from urban centers, roads, mining dams, and land use) were used to determine the environmental vulnerability index (EVI). The EVI was classified into five classes, identifying associated land uses. Vulnerability was verified in water resource management units (UGRHs) and municipalities using hot spot analysis. The study employed the water quality index (WQI) to assess the EVI and global sensitivity analysis (GSA) to evaluate the model input parameters that most influence the basin's environmental vulnerability. The results showed that the regions near the middle Doce River were considered environmentally more vulnerable, especially the UGRHs Guandu, Manhuaçu, and Caratinga; and 35.9% of the basin has high and very high vulnerabilities. Hot spot analysis identified regions with low EVI values (cold spot) in the north and northwest, while areas with high values (hot spot) were concentrated mainly in the middle Doce region. Water monitoring stations with the worst WQI values were found in the most environmentally vulnerable areas. The GSA determined that land use and slope were the primary factors influencing the model's response. The results of this study provide valuable information for supporting environmental planning in the Doce River basin.
(© 2023. The Author(s), under exclusive licence to Springer Nature Switzerland AG.)
References: Abreu, M. C., de Souza Fraga, M., de Almeida, L. T., Silva, F. B., Cecílio, R. A., Lyra, G. B., & Delgado, R. C. (2022). Streamflow in the Sapucaí River watershed, Brazil: Probabilistic modeling, reference streamflow, and regionalization. Physics and Chemistry of the Earth, Parts a/b/c, 126, 103133. https://doi.org/10.1016/J.PCE.2022.103133. (PMID: 10.1016/J.PCE.2022.103133)
AGERH. (2020). Agência Estadual de Recursos Hídricos. Qualidade das Águas do Estado do Espírito Santo. https://servicos.agerh.es.gov.br/iqa/home.php . Accessed 25 June 2019.
Aires, U. R. V., Santos, B. S. M., Coelho, C. D., da Silva, D. D., & Calijuri, M. L. (2018). Changes in land use and land cover as a result of the failure of a mining tailings dam in Mariana, MG, Brazil. Land Use Policy. https://doi.org/10.1016/j.landusepol.2017.10.026. (PMID: 10.1016/j.landusepol.2017.10.026)
Ali, S. A., Parvin, F., Pham, Q. B., Vojtek, M., Vojteková, J., Costache, R., Linh, N. T. T., Nguyen, H. Q., Ahmad, A., & Ghorbani, M. A. (2020). GIS-based comparative assessment of flood susceptibility mapping using hybrid multi-criteria decision-making approach, naïve Bayes tree, bivariate statistics and logistic regression: A case of Topľa basin, Slovakia. Ecological Indicators, 117, 106620. https://doi.org/10.1016/j.ecolind.2020.106620. (PMID: 10.1016/j.ecolind.2020.106620)
Almeida, C. A., de Oliveira, A. F., Pacheco, A. A., Lopes, R. P., Neves, A. A., Ribeiro, L., & de Queiroz, M. E. (2018). Characterization and evaluation of sorption potential of the iron mine waste after Samarco dam disaster in Doce River basin – Brazil. Chemosphere, 209, 411–420. https://doi.org/10.1016/J.CHEMOSPHERE.2018.06.071. (PMID: 10.1016/J.CHEMOSPHERE.2018.06.071)
Alvarado, A., Esteller, M. V., Quentin, E., & Expósito, J. L. (2016). Multi-criteria decision analysis and GIS approach for prioritization of drinking water utilities protection based on their vulnerability to contamination. Water Resources Management, 30(4), 1549–1566. https://doi.org/10.1007/s11269-016-1239-4. (PMID: 10.1007/s11269-016-1239-4)
ANA. (2016). Agência Nacional de Águas. Encarte Especial sobre a Bacia do Rio Doce. Rompimento da barragem em Mariana/MG. Superintendência de Planejamento de Recursos Hídricos - SPR. Brasília, DF.
ANA. (2017). Agência Nacional de Águas e Saneamento. Catálogo de Metadados da ANA. Bases Hidrográficas Ottocodificadas Multiescalas. https://metadados.snirh.gov.br/geonetwork/srv/por/catalog.search#/metadata/f7b1fc91-f5bc-4d0d-9f4f-f4e5061e5d8f . Accessed 11 Jul 2021.
ANA. (2019). Agência Nacional de Águas. HIDROWEB - Sistema de Informações Hidrológicas. http://www.snirh.gov.br/hidroweb/publico/apresentacao.jsf . Accessed 25 June 2019.
Anjinho, P. D. S., Barbosa, M. A. G. A., Costa, C. W., & Mauad, F. F. (2021). Environmental fragility analysis in reservoir drainage basin land use planning: A Brazilian basin case study. Land Use Policy, 100, 104946. https://doi.org/10.1016/j.landusepol.2020.104946. (PMID: 10.1016/j.landusepol.2020.104946)
ANM. (2020). Agência Nacional de Mineração. Relatório Anual de Segurança de Barragens de Mineração 2019. Brasília, DF.
ANM. (2021). Agência Nacional de Mineração. Cadastro Nacional de Barragens de Mineração. https://app.anm.gov.br/SIGBM/Publico/Mapa . Accessed 21 Sep 2021.
Apan, A. A. (1997). Land cover mapping for tropical forest rehabilitation planning using remotely-sensed data. International Journal of Remote Sensing, 18(5), 1029–1049. https://doi.org/10.1080/014311697218557. (PMID: 10.1080/014311697218557)
Baležentis, T., & Streimikiene, D. (2017). Multi-criteria ranking of energy generation scenarios with Monte Carlo simulation. Applied Energy, 185, 862–871. https://doi.org/10.1016/J.APENERGY.2016.10.085. (PMID: 10.1016/J.APENERGY.2016.10.085)
Batiot, B., Rogaume, T., Collin, A., Richard, F., & Luche, J. (2016). Sensitivity and uncertainty analysis of Arrhenius parameters in order to describe the kinetic of solid thermal degradation during fire phenomena. Fire Safety Journal, 82, 76–90. https://doi.org/10.1016/J.FIRESAF.2016.03.007. (PMID: 10.1016/J.FIRESAF.2016.03.007)
BRASIL. (2012). LEI N o 12.651, DE 25 DE MAIO DE 2012. http://www.planalto.gov.br/ccivil_03/_Ato2011-2014/2012/Lei/L12651.htm . Accessed 09 Aug 2020.
Brito, M. M. D., Almoradie, A., & Evers, M. (2019). Spatially-explicit sensitivity and uncertainty analysis in a MCDA-based flood vulnerability model. International Journal of Geographical Information Science, 33(9), 1788–1806. https://doi.org/10.1080/13658816.2019.1599125. (PMID: 10.1080/13658816.2019.1599125)
Buckley, S. M., Agram, P. S., Belz, J. E., Crippen, R. E., Gurrola, E. M., Hensley, S., Kobrick, M., Lavalle, M., Martin, J. M., Neumann, M., Nguyen, Q. D., Rosen, P. A., Shimada, J. G., Simard, M., & Tung, W. W. (2020). NASADEM: User guide. Nasa/Jpl, January, 48. https://lpdaac.usgs.gov/documents/592/NASADEM_User_Guide_V1.pd f.  Accessed 28 Jul 2023.
Calegario, A. T. (2021). Metodologia para caracterização e mapeamento da intensidade de uso da terra (p. 168). Tese (Doutorado em Engenharia Agrícola) - Universidade de Viçosa.
Campos, J. A., da Silva, D. D., Moreira, M. C., de Filho, F. C. M., & M. (2021). Environmental fragility and land use capacity as instruments of environmental planning, Caratinga River basin, Brazil. Environmental Earth Sciences, 80(7), 1–13. https://doi.org/10.1007/s12665-021-09553-2. (PMID: 10.1007/s12665-021-09553-2)
Caprioli, C., & Bottero, M. (2021). Addressing complex challenges in transformations and planning: A fuzzy spatial multicriteria analysis for identifying suitable locations for urban infrastructures. Land Use Policy, August, 105147. https://doi.org/10.1016/j.landusepol.2020.105147.
Carmo, F. F. D., Kamino, L. H. Y., Junior, R. T., Campos, I. C. D., Carmo, F. F. D., Silvino, G., de Castro, K. J. D. S. X., Mauro, M. L., Rodrigues, N. U. A., Miranda, M. P. D. S., & Pinto, C. E. F. (2017). Fundão tailings dam failures: the environment tragedy of the largest technological disaster of Brazilian mining in global context. Perspectives in Ecology and Conservation, 15(3), 145–151. https://doi.org/10.1016/J.PECON.2017.06.002. (PMID: 10.1016/J.PECON.2017.06.002)
CBH-Doce. (2021). Comitê da Bacia Hidrográfica do Rio Doce. UGRHs. Disponível em: https://sigaaguas.org.br/home/apps/repositorio/?group=agedoce . Accessed 11 Dec 2021.
CBH-DOCE. (2016a). Comitê da Bacia Hidrográfica do Rio Doce. A bacia hidrográfica do Rio Doce. http://www.cbhdoce.org.br/institucional/a-bacia . Accessed 08 June 2019.
CBH- DOCE. (2016b). Comitê da Bacia Hidrográfica do Rio Doce. Programa Produtor de Água. https://www.cbhdoce.org.br/programas-e-projetos/p24-programa-produtor-de-agua . Accessed 09 Aug 2022.
Chen, Y., Yu, J., & Khan, S. (2010). Spatial sensitivity analysis of multi-criteria weights in GIS-based land suitability evaluation. Environmental Modelling & Software, 25(12), 1582–1591. https://doi.org/10.1016/J.ENVSOFT.2010.06.001. (PMID: 10.1016/J.ENVSOFT.2010.06.001)
Crepani, E., Medeiros, J. S., Filho, P. H., Gallotti, T., Valdete, F., Cláudio, D., & Faria Barbosa, C. (2001). Sensoriamento remoto e geoprocessamento aplicados ao zoneamento ecológico-econômico e ao ordenamento territorial. INPE,124 p.
Cruz, B. B., Manfré, L. A., Ricci, D. S., Brunoro, D., Appolinario, L., & Quintanilha, J. A. (2017). Environmental fragility framework for water supply systems: A case study in the Paulista Macro Metropolis area (SE Brazil). Environmental Earth Sciences, 76(12), 441. https://doi.org/10.1007/s12665-017-6778-3. (PMID: 10.1007/s12665-017-6778-3)
D’Andrea, M. F., Letourneau, G., Rousseau, A. N., & Brodeur, J. C. (2020). Sensitivity analysis of the Pesticide in Water Calculator model for applications in the Pampa region of Argentina. Science of the Total Environment, 698, 134232. https://doi.org/10.1016/J.SCITOTENV.2019.134232. (PMID: 10.1016/J.SCITOTENV.2019.134232)
DNPM. (2017). Departamento Nacional de Produção Mineral. Portaria n o 70.389, de 17 de maio de 2017, segurança de barragens de mineração. https://www.in.gov.br/materia/-/asset_publisher/Kujrw0TZC2Mb/content/id/20222904/do1-2017-05-19-portaria-n-70-389-de-17-de-maio-de-2017-20222835 . Accessed 21 Sept 2021.
Eastman, J. R. (2012). IDRISI Selva Tutorial. Clark University, 354 p.
ECOPLAN-LUME. (2010). Plano Integrado de Recursos Hídricos da Bacia Hidrográfica do Rio Doce. Consórcio Ecoplan/LUME, v1., p. 472. https://www.cbhdoce.org.br//wp-content/uploads/2016/12/PIRH_Doce_Volume_I.pdf . Accessed 25 June 2019.
EMBRAPA. (2018). Empresa Brasileira de Pesquisa Agropecuária. Sistema Brasileiro de Classificação de Solos (5th ed.). EMBRAPA, Brasília, 356 p.
Felippe, M. F., Junior, A. P. M., Mendes, L. C., Carneiro, P. S., & Gontijo, B. M. (2016). Conexões geo-históricas e contemporâneas entre ocupação territorial, degradação ambiental e rarefação hídrica na Bacia do Rio Doce. Revista Geografias, 203–222. https://doi.org/10.35699/2237-549X..13474.
Ferreira, R. G., da Silva, D. D., Elesbon, A. A. A., Fernandes-Filho, E. I., Veloso, G. V., Fraga, M. D. S., & Ferreira, L. B. (2021). Machine learning models for streamflow regionalization in a tropical watershed. Journal of Environmental Management, 280, 111713. https://doi.org/10.1016/J.JENVMAN.2020.111713. (PMID: 10.1016/J.JENVMAN.2020.111713)
Fraga, M. D. S., da Silva, D. D., Elesbon, A. A. A., & Guedes, H. A. S. (2019). Methodological proposal for the allocation of water quality monitoring stations using strategic decision analysis. Environmental Monitoring and Assessment, 191(12), 776. https://doi.org/10.1007/s10661-019-7974-2. (PMID: 10.1007/s10661-019-7974-2)
Fraga, M. D. S., da Silva, D. D., Reis, G. B., Guedes, H. A. S., & Elesbon, A. A. A. (2021). Temporal and spatial trend analysis of surface water quality in the Doce River basin, Minas Gerais, Brazil. Environment, Development and Sustainability, 23(8), 12124–12150. https://doi.org/10.1007/s10668-020-01160-8. (PMID: 10.1007/s10668-020-01160-8)
França, L. C. D. J., Lopes, L. F., Morais, M. S. D., Lisboa, G. D. S., Rocha, S. J. S. D., Junior, V. T. M. D. M., Santana, R. C., & Mucida, D. P. (2022). Environmental fragility zoning using GIS and AHP modeling: Perspectives for the conservation of natural ecosystems in Brazil. Conservation, 2, 349–366. https://doi.org/10.3390/conservation2020024. (PMID: 10.3390/conservation2020024)
Furlan, A., Bonotto, D. M., & Gumiere, S. J. (2011). Development of environmental and natural vulnerability maps for Brazilian coastal at São Sebastião in São Paulo State. Environmental Earth Sciences, 64(3), 659–669. https://doi.org/10.1007/s12665-010-0886-7. (PMID: 10.1007/s12665-010-0886-7)
GEE. (2019). Google Earth Engine. Introduction: Google Earth Engine API - Google Developers. https://earthengine.google.com/ . Accessed 20 Aug 2019.
Getis, A., & Ord, J. K. (2010). The analysis of spatial association by use of distance statistics. In Perspectives on spatial data analysis. Advances in spatial science (pp. 127–145). Springer. https://doi.org/10.1007/978-3-642-01976-0_10/COVER.
Gómez-Delgado, M., & Tarantola, S. (2006). GLOBAL sensitivity analysis, GIS and multi-criteria evaluation for a sustainable planning of a hazardous waste disposal site in Spain. International Journal of Geographical Information Science, 20(4), 449–466. https://doi.org/10.1080/13658810600607709. (PMID: 10.1080/13658810600607709)
Guimarães, F. S., Cordeiro, C. M., Bueno, G. T., Carvalho, V. L. M., & Nero, M. A. (2017). Uma proposta para automatização do Índice de dissecação do relevo. Revista Brasileira de Geomorfologia, 18(1), 155–167. https://doi.org/10.20502/rbg.v18i1.1163.
IBGE. (2019a). Instituto Brasileiro de Geografia e Estatística. Mapa digital de solos do Brasil. Escala 1:250.000. https://geoftp.ibge.gov.br/informacoes_ambientais/pedologia/vetores/escala_250_mil/ . Accessed 25 June 2019.
IBGE. (2019b). Instituto Brasileiro de Geografia e Estatística. Mapa geológico digital do Brasil. Escala 1:250,000. Rio Janeiro. https://geoftp.ibge.gov.br/informacoes_ambientais/geologia/levantamento_geologico/vetores/escala_250_mil/ . Accessed 25 June 2019.
IBGE. (2019c). Instituto Brasileiro de Geografia e Estatística. Bases cartográficas contínuas do Brasil. Escala 1:250.000. Rio Janeiro. https://www.ibge.gov.br/geociencias/cartas-e-mapas/bases-cartograficas-continuas/15759-brasil.html?=&t=downloads . Accessed 25 June 2019.
IBGE. (2021). Instituto Brasileiro de Geografia e Estatística. Bases Cartográficas Contínuas. Escala 1:250,000 https://www.ibge.gov.br/geociencias/cartas-e-mapas/bases-cartograficas-continuas/15759-brasil.html?=&t=downloads . Accessed 15 Dec 2021.
IGAM. (2020). Instituto Mineiro de Gestão das Águas. Portal InfoHidro. http://repositorioigam.meioambiente.mg.gov.br . Accessed 10 Mar 2020.
IGAM. (2021). Instituto Mineiro de Gestão das Águas. Avaliação da qualidade das águas superficiais de Minas Gerais em 2020: resumo executivo anual. IGAM, Belo Horizonte.
Iooss, B., Da Veiga, S., Janon, A., & Pujol, G. (2021). Sensitivity: Global sensitivity analysis of model outputs, R package version 1.26.0. https://cran.r-project.org/package=sensitivity .  Accessed 18 June 2021.
IPCC. (2014). Climate change 2014. Impacts, adaptation, and vulnerability. Part A: Global and sectoral aspects. Contribution of working group II contribution to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, New York, USA. p.5, New York.
Isaaks, E. H., & Srivastava, R. M. (1989). Applied geostatistics. Oxford University Press.
Jabbar, F. K., Grote, K., & Tucker, R. E. (2019). A novel approach for assessing watershed susceptibility using weighted overlay and analytical hierarchy process (AHP) methodology: A case study in Eagle Creek Watershed, USA. Environmental Science and Pollution Research, 1–17. https://doi.org/10.1007/s11356-019-06355-9.
Jesus, E. T., Amorim, J. D. S., Junqueira, R., Viola, M. R., & de Mello, C. R. (2020). Meteorological and hydrological drought from 1987 to 2017 in Doce River Basin, Southeastern Brazil. RBRH, 25, 1–10. https://doi.org/10.1590/2318-0331.252020190181. (PMID: 10.1590/2318-0331.252020190181)
Kamran, M., Bian, J., Li, A., Lei, G., Nan, X., & Jin, Y. (2021). Investigating eco-environmental vulnerability for China-Pakistan economic corridor key sector Punjab using multi-sources geo-information. ISPRS International Journal of Geo-Information. https://doi.org/10.3390/ijgi10090625. (PMID: 10.3390/ijgi10090625)
Katipoglu, O. M., Acar, R., & Şenocak, S. (2021). Spatio-temporal analysis of meteorological and hydrological droughts in the Euphrates Basin, Turkey. Water Science and Technology: Water Supply, 21(4), 1657–1673. https://doi.org/10.2166/WS.2021.019. (PMID: 10.2166/WS.2021.019)
Kazemi, H., & Akinci, H. (2018). A land use suitability model for rainfed farming by multi-criteria decision-making analysis (MCDA) and geographic information system (GIS). Ecological Engineering, 116(March), 1–6. https://doi.org/10.1016/j.ecoleng.2018.02.021. (PMID: 10.1016/j.ecoleng.2018.02.021)
KC, U., Aryal, J., Garg, S., & Hilton, J. (2021). Global sensitivity analysis for uncertainty quantification in fire spread models. Environmental Modelling & Software, 143, 105110. https://doi.org/10.1016/J.ENVSOFT.2021.105110. (PMID: 10.1016/J.ENVSOFT.2021.105110)
Kong, F., Ban, Y., Yin, H., James, P., & Dronova, I. (2017). Modeling stormwater management at the city district level in response to changes in land use and low impact development. Environmental Modelling & Software, 95, 132–142. https://doi.org/10.1016/J.ENVSOFT.2017.06.021. (PMID: 10.1016/J.ENVSOFT.2017.06.021)
Lepsch, I. F., Bellinazzi, J. R., Bertolini, D., & Espíndola, C. R. (1991). Manual para levantamento utilitário do meio físico e classificação de terras no sistema de capacidade de uso. Sociedade Brasileira de Ciência do Solo, 175p.
Liou, Y.-A., Nguyen, A. K., & Li, M.-H. (2017). Assessing spatiotemporal eco-environmental vulnerability by Landsat data. Ecological Indicators, 80, 52–65. https://doi.org/10.1016/J.ECOLIND.2017.04.055. (PMID: 10.1016/J.ECOLIND.2017.04.055)
Liu, D., Cao, C., Dubovyk, O., Tian, R., Chen, W., Zhuang, Q., Zhao, Y., & Menz, G. (2017). Using fuzzy analytic hierarchy process for spatio-temporal analysis of eco-environmental vulnerability change during 1990–2010 in Sanjiangyuan region, China. Ecological Indicators, 73, 612–625. https://doi.org/10.1016/J.ECOLIND.2016.08.031. (PMID: 10.1016/J.ECOLIND.2016.08.031)
Liu, Y. F., Liu, Y., Shi, Z. H., López-Vicente, M., & Wu, G. L. (2020). Effectiveness of re-vegetated forest and grassland on soil erosion control in the semi-arid Loess Plateau. CATENA, 195, 104787. https://doi.org/10.1016/J.CATENA.2020.104787. (PMID: 10.1016/J.CATENA.2020.104787)
Luu, C., Von Meding, J., & Kanjanabootra, S. (2018). Assessing flood hazard using flood marks and analytic hierarchy process approach: A case study for the 2013 flood event in Quang Nam, Vietnam. Natural Hazards, 90(3), 1031–1050. https://doi.org/10.1007/S11069-017-3083-0. (PMID: 10.1007/S11069-017-3083-0)
Lyra, B. U., & Rigo, D. (2019). Deforestation impact on discharge regime in the Doce River basin. Revista Ambiente & Água. https://doi.org/10.4136/AMBI-AGUA.2370. (PMID: 10.4136/AMBI-AGUA.2370)
Macedo, D. R., Hughes, R. M., Kaufmann, P. R., & Callisto, M. (2018). Development and validation of an environmental fragility index (EFI) for the neotropical savannah biome. Science of the Total Environment, 635, 1267–1279. https://doi.org/10.1016/j.scitotenv.2018.04.216. (PMID: 10.1016/j.scitotenv.2018.04.216)
Magalhães, I. B., de Barros, C., Nogueira, G. C., Lage Alves, I. S., Calijuri, M. L., Lorentz, J. F., & SDC, A. (2020). Site suitability for photovoltaic energy expansion: A Brazilian’s high demand states study case. Remote Sensing Applications: Society and Environment. https://doi.org/10.1016/j.rsase.2020.100341. (PMID: 10.1016/j.rsase.2020.100341)
Mansour, Z., Yanick, T., Aissa, S., Soraya, R., Abderahmane, H., Abdelkader, A., Abdelkader, K., Zahéra, S., Souad, M., & Kacem, M. (2021). The susceptibility analysis of landslide using bivariate and multivariate modeling techniques in western Algeria: Case of Fergoug watershed (Beni-Chougrane Mountains). Arabian Journal of Geosciences, 14(19), 1–19. https://doi.org/10.1007/S12517-021-07919-1. (PMID: 10.1007/S12517-021-07919-1)
MapBiomas. (2021a). Projeto MapBiomas Coleção 6 - Série Anual de Mapas de Cobertura e Uso de Solo do Brasil. http://mapbiomas.org/ . Accessed 10.5.21.
MapBiomas. (2021b). Projeto MapBiomas: Qualidade de Pastagens, versão 1.1.0. http://mapbiomas.org . Accessed 25 Oct 2021.
Mihi, A., Benarfa, N., & Arar, A. (2020). Assessing and mapping water erosion-prone areas in northeastern Algeria using analytic hierarchy process, USLE/RUSLE equation, GIS, and remote sensing. Applied Geomatics, 12(2), 179–191. (PMID: 10.1007/s12518-019-00289-0)
Mondal, S. (2020). Modeling the spatial pattern of household quality of living in West Bengal: An approach of hotspot and cluster analysis. Modeling Earth Systems and Environment, 6(2), 833–851. https://doi.org/10.1007/s40808-020-00711-2. (PMID: 10.1007/s40808-020-00711-2)
Monteiro, L. I. B., Pruski, F. F., Calegario, A. T., Oliveira, A. N. G., & Pereira, S. B. (2018). Methodology for payment for ecosystem services based on the concept of land use and management capability. Soil Use and Management, 34(4), 515–524. https://doi.org/10.1111/sum.12442. (PMID: 10.1111/sum.12442)
Moonga, G., Chisola, M. N., Berger, U., Nowak, D., Yabe, J., Nakata, H., Nakayama, S., Ishizuka, M., & Bose-O’Reilly, S. (2022). Geospatial approach to investigate spatial clustering and hotspots of blood lead levels in children within Kabwe, Zambia. Environmental Research, 207, 112646. https://doi.org/10.1016/J.ENVRES.2021.112646. (PMID: 10.1016/J.ENVRES.2021.112646)
Morozesk, M., Souza, I. D. C., Fernandes, M. N., & Soares, D. C. F. (2021). Airborne particulate matter in an iron mining city: Characterization, cell uptake and cytotoxicity effects of nanoparticles from PM2.5, PM10 and PM20 on human lung cells. Environmental Advances, 6, 100125. https://doi.org/10.1016/J.ENVADV.2021.100125. (PMID: 10.1016/J.ENVADV.2021.100125)
NASA, J. (2020). NASADEM Merged DEM Global 1 arc second V001 . NASA EOSDIS Land Processes Distributed Active Archive Center. https://doi.org/10.5067/MEaSUREs/NASADEM/NASADEM_HGT.001 . Accessed 28 July 2023.
Nascimento, A. R. V. J. D., Cunha, G. K. G., Nascimento, C. W. A. D., & Cunha, K. P. V. D. (2021). Assessing soil quality and heavy metal contamination on scheelite mining sites in a tropical semi-arid setting. Water, Air, and Soil Pollution, 232(9), 1–15. https://doi.org/10.1007/s11270-021-05299-6. (PMID: 10.1007/s11270-021-05299-6)
Nguyen, A. K., Liou, Y.-A., Li, M.-H., & Tran, T. A. (2016). Zoning eco-environmental vulnerability for environmental management and protection. Ecological Indicators, 69, 100–117. https://doi.org/10.1016/j.ecolind.2016.03.026. (PMID: 10.1016/j.ecolind.2016.03.026)
Nguyen, K.-A., & Liou, Y.-A. (2019). Global mapping of eco-environmental vulnerability from human and nature disturbances. Science of the Total Environment, 664, 995–1004. https://doi.org/10.1016/J.SCITOTENV.2019.01.407. (PMID: 10.1016/J.SCITOTENV.2019.01.407)
Pineda Rojas, A. L., & Bikiel, D. E. (2019). Global and local sensitivity analysis of urban background ozone modelled with a simplified photochemical scheme. Atmospheric Environment, 213, 199–206. https://doi.org/10.1016/J.ATMOSENV.2019.06.014. (PMID: 10.1016/J.ATMOSENV.2019.06.014)
Poleto, C., Bortoluzzi, E. C., Charlesworth, S. M., & Merten, G. H. (2009). Urban sediment particle size and pollutants in Southern Brazil. Journal of Soils and Sediments, 9(4), 317–327. https://doi.org/10.1007/s11368-009-0102-0. (PMID: 10.1007/s11368-009-0102-0)
Progênio, M. F., da Costa Filho, F. A. M., Crispim, D. L., Raiol Souza, M. J., Pimentel da Silva, G. D., & Fernandes, L. L. (2020). Ranking sustainable areas for the development of tidal power plants: A case study in the northern coastline of Brazil. International Journal of Energy Research, 44(12), 9772–9786. https://doi.org/10.1002/er.5716. (PMID: 10.1002/er.5716)
Pruski, F. F. (2009). Conservação de solo e água (2nd ed.). Editora UFV, Viçosa, 279 p.
Purinton, B., & Bookhagen, B. (2021). Beyond vertical point accuracy: Assessing inter-pixel consistency in 30 m global DEMs for the arid Central Andes. Frontiers in Earth Science, 9, 1–24. https://doi.org/10.3389/feart.2021.758606. (PMID: 10.3389/feart.2021.758606)
Rawat, J. S., & Kumar, M. (2015). Monitoring land use/cover change using remote sensing and GIS techniques: A case study of Hawalbagh block, district Almora, Uttarakhand, India. The Egyptian Journal of Remote Sensing and Space Science, 18(1), 77–84. https://doi.org/10.1016/J.EJRS.2015.02.002. (PMID: 10.1016/J.EJRS.2015.02.002)
Reis, D. A. D., Nascimento, L. P., Abreu, A. T. D., Nalini Júnior, H. A., Roeser, H. M. P., & Santiago, A. D. F. (2020). Geochemical evaluation of bottom sediments affected by historic mining and the rupture of the Fundão dam, Brazil. Environmental Science and Pollution Research, 27(4), 4365–4375. https://doi.org/10.1007/s11356-019-07119-1. (PMID: 10.1007/s11356-019-07119-1)
Ribeiro, S. M. C., Rajão, R., Nunes, F., Assis, D., Neto, J. A., Marcolino, C., Lima, L., Rickard, T., Salomão, C., & Filho, B. S. (2020). A spatially explicit index for mapping Forest Restoration Vocation (FRV) at the landscape scale: Application in the Rio Doce basin, Brazil. Science of the Total Environment, 744, 140647. https://doi.org/10.1016/j.scitotenv.2020.140647. (PMID: 10.1016/j.scitotenv.2020.140647)
Rodrigues, A. L. M., Reis, G. B., dos Santos, M. T., da Silva, D. D., dos Santos, V. J., de Siqueira Castro, J., & Calijuri, M. L. (2019). Influence of land use and land cover’s change on the hydrological regime at a Brazilian southeast urbanized watershed. Environmental Earth Sciences, 78(20), 595. https://doi.org/10.1007/s12665-019-8601-9. (PMID: 10.1007/s12665-019-8601-9)
Ross, J. L. S. (1994). Análise empírica da fragilidade de ambientes naturais e antropizados. Geography Department, University of Sao Paulo, 8, 63–74. (PMID: 10.7154/RDG.1994.0008.0006)
Rudorff, N., Rudorff, C. M., Kampel, M., & Ortiz, G. (2018). Remote sensing monitoring of the impact of a major mining wastewater disaster on the turbidity of the Doce River plume off the eastern Brazilian coast. ISPRS Journal of Photogrammetry and Remote Sensing, 145, 349–361. https://doi.org/10.1016/J.ISPRSJPRS.2018.02.013. (PMID: 10.1016/J.ISPRSJPRS.2018.02.013)
Saaty, T. L. (1980). The analytic hierarchy process: Planning, priority setting, resource allocation. McGraw-Hill International.
Saaty, T. L. (1989). The analytic hierarchy process. In P. T. Golden, B.L., Wasil, E.A., Harker (Ed.), Group decision making and the AHP (pp. 59–67). Springer.
Sahoo, S., Dhar, A., & Kar, A. (2016). Environmental vulnerability assessment using grey analytic hierarchy process based model. Environmental Impact Assessment Review, 56, 145–154. https://doi.org/10.1016/j.eiar.2015.10.002. (PMID: 10.1016/j.eiar.2015.10.002)
Sahoo, S., Dhar, A., Debsarkar, A., & Kar, A. (2019). Future scenarios of environmental vulnerability mapping using grey analytic hierarchy process. Natural Resources Research, 28(4), 1461–1483. https://doi.org/10.1007/s11053-019-09462-z. (PMID: 10.1007/s11053-019-09462-z)
Saltelli, A. (2002). Making best use of model evaluations to compute sensitivity indices. Computer Physics Communications, 145(2), 280–297. https://doi.org/10.1016/S0010-4655(02)00280-1. (PMID: 10.1016/S0010-4655(02)00280-1)
Saltelli, A., Aleksankina, K., Becker, W., Fennell, P., Ferretti, F., Holst, N., Li, S., & Wu, Q. (2019). Why so many published sensitivity analyses are false: A systematic review of sensitivity analysis practices. Environmental Modelling & Software, 114, 29–39. https://doi.org/10.1016/J.ENVSOFT.2019.01.012. (PMID: 10.1016/J.ENVSOFT.2019.01.012)
Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cariboni, J., Gatelli D., Saisana, M., & Tarantola, S. (2008). Global sensitivity analysis. The primer. John Wiley & Sons Ltd.
Silva, A. C. O., Fonseca, L. M. G., Körting, T. S., & Escada, M. I. S. (2020). A spatio-temporal Bayesian network approach for deforestation prediction in an Amazon rainforest expansion frontier. Spatial Statistics, 35, 100393. https://doi.org/10.1016/j.spasta.2019.100393. (PMID: 10.1016/j.spasta.2019.100393)
Sobol, I. M. (1993). Sensitivity analysis for non-linear mathematical models. Mathematical Modeling and Computational Experiment, 1, 407–414.
Sobol, I. M. (2001). Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates. Mathematics and Computers in Simulation, 55, 271–280. (PMID: 10.1016/S0378-4754(00)00270-6)
Sutadian, A. D., Muttil, N., Yilmaz, A. G., & Perera, B. J. C. (2017). Using the analytic hierarchy process to identify parameter weights for developing a water quality index. Ecological Indicators, 75, 220–233. https://doi.org/10.1016/j.ecolind.2016.12.043. (PMID: 10.1016/j.ecolind.2016.12.043)
Uliana, E. M., Silva, D. D., Moreira, M. C., & Pereira, D. R. (2019). Global sensitivity analysis methods applied to hydrologic modeling with the SAC-SMA model. Engenharia Agrícola, Jaboticabal, 39(1), 65–74. (PMID: 10.1590/1809-4430-eng.agric.v39n1p65-74/2019)
Vergilio, C. D. S., Lacerda, D., Souza, T. D. S., Oliveira, B. C. V. D., Fioresi, V. S., Souza, V. V. D., Rodrigues, G. D. R., Barbosa, M. K. D. A. M., Sartori, E., Rangel, T. P., Almeida, D. Q. R. D., Almeida, M. G. D., Thompson, F., & Rezende, C. E. D. (2021). Immediate and long-term impacts of one of the worst mining tailing dam failure worldwide (Bento Rodrigues, Minas Gerais, Brazil). Science of the Total Environment, 756, 143697. https://doi.org/10.1016/J.SCITOTENV.2020.143697. (PMID: 10.1016/J.SCITOTENV.2020.143697)
Vieira, R. M. D. S. P., Tomasella, J., Cunha, A. P. M. D. A., Barbosa, A. A., Pompeu, J., Ferreira, Y., Santos, F. C., Alves, L. M., & Ometto, J. (2023). Socio-environmental vulnerability to drought conditions and land degradation: An assessment in two northeastern Brazilian river basins. Sustainability (switzerland). https://doi.org/10.3390/su15108029. (PMID: 10.3390/su15108029)
Wei, W., Shi, S., Zhang, X., Zhou, L., Xie, B., Zhou, J., & Li, C. (2020). Regional-scale assessment of environmental vulnerability in an arid inland basin. Ecological Indicators, 109, 105792. https://doi.org/10.1016/j.ecolind.2019.105792. (PMID: 10.1016/j.ecolind.2019.105792)
Wolff, W., Duarte, S. N., & Fernandes, R. D. M. (2020). Spatialization of the annual and seasonal average precipitations in the state of Santa Catarina, Brazil. Journal of South American Earth Sciences, 103, 102735. https://doi.org/10.1016/j.jsames.2020.102735. (PMID: 10.1016/j.jsames.2020.102735)
Yang, X., Yang, Y., Li, K., & Wu, R. (2020). Estimation and characterization of annual precipitation based on spatiotemporal kriging in the Huanghuaihai basin of China during 1956–2016. Stochastic Environmental Research and Risk Assessment, 34(9), 1407–1420. https://doi.org/10.1007/s00477-019-01757-0. (PMID: 10.1007/s00477-019-01757-0)
Zhang, S., Fan, W., Li, Y., & Yi, Y. (2017). The influence of changes in land use and landscape patterns on soil erosion in a watershed. Science of the Total Environment, 574, 34–45. https://doi.org/10.1016/j.scitotenv.2016.09.024. (PMID: 10.1016/j.scitotenv.2016.09.024)
Zhao, J., Ji, G., Tian, Y., Chen, Y., & Wang, Z. (2018). Environmental vulnerability assessment for mainland China based on entropy method. Ecological Indicators, 91, 410–422. https://doi.org/10.1016/j.ecolind.2018.04.016. (PMID: 10.1016/j.ecolind.2018.04.016)
Zimmer, A. H., Macedo, M. C. M., Kichel, A. N., & Almeida, R. G. D. (2012). Degradação, recuperação e renovação de pastagens. Embrapa Gado de Corte, p. 42.  https://ainfo.cnptia.embrapa.br/digital/bitstream/item/77431/1/DOC189.pdf . Accessed 25 Oct 2020.
Zou, T., & Yoshino, K. (2017). Environmental vulnerability evaluation using a spatial principal components approach in the Daxing’anling region, China. Ecological Indicators, 78, 405–415. (PMID: 10.1016/j.ecolind.2017.03.039)
معلومات مُعتمدة: 140418/2020-2 Conselho Nacional de Desenvolvimento Científico e Tecnológico; Finance Code 001 Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
فهرسة مساهمة: Keywords: Basin management; Environmental degradation; Global sensitivity analysis; Land use; Multicriteria analysis
تواريخ الأحداث: Date Created: 20230830 Date Completed: 20230901 Latest Revision: 20231005
رمز التحديث: 20231215
DOI: 10.1007/s10661-023-11782-w
PMID: 37648931
قاعدة البيانات: MEDLINE
الوصف
تدمد:1573-2959
DOI:10.1007/s10661-023-11782-w