دورية أكاديمية

The small-molecule formyl peptide receptor biased agonist, compound 17b, is a vasodilator and anti-inflammatory in mouse precision-cut lung slices.

التفاصيل البيبلوغرافية
العنوان: The small-molecule formyl peptide receptor biased agonist, compound 17b, is a vasodilator and anti-inflammatory in mouse precision-cut lung slices.
المؤلفون: Studley WR; Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia., Lamanna E; Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia., Martin KA; Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia., Nold-Petry CA; Department of Paediatrics, Monash University, Clayton, Victoria, Australia.; Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia., Royce SG; Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia., Woodman OL; Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia., Ritchie RH; Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.; Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia.; Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia., Qin CX; Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia.; Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia., Bourke JE; Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.
المصدر: British journal of pharmacology [Br J Pharmacol] 2024 Jul; Vol. 181 (14), pp. 2287-2301. Date of Electronic Publication: 2023 Sep 26.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Wiley Country of Publication: England NLM ID: 7502536 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1476-5381 (Electronic) Linking ISSN: 00071188 NLM ISO Abbreviation: Br J Pharmacol Subsets: MEDLINE
أسماء مطبوعة: Publication: London : Wiley
Original Publication: London, Macmillian Journals Ltd.
مواضيع طبية MeSH: Receptors, Formyl Peptide*/agonists , Receptors, Formyl Peptide*/antagonists & inhibitors , Receptors, Formyl Peptide*/metabolism , Mice, Inbred C57BL* , Vasodilator Agents*/pharmacology , Lung*/drug effects , Lung*/metabolism , Anti-Inflammatory Agents*/pharmacology, Animals ; Male ; Mice ; Female ; Dose-Response Relationship, Drug ; Vasodilation/drug effects
مستخلص: Background and Purpose: Pulmonary arterial hypertension (PAH), a rare fatal disorder characterised by inflammation, vascular remodelling and vasoconstriction. Current vasodilator therapies reduce pulmonary arterial pressure but not mortality. The G-protein coupled formyl peptide receptors (FPRs) mediates vasodilatation and resolution of inflammation, actions possibly beneficial in PAH. We investigated dilator and anti-inflammatory effects of the FPR biased agonist compound 17b in pulmonary vasculature using mouse precision-cut lung slices (PCLS).
Experimental Approach: PCLS from 8-week-old male and female C57BL/6 mice, intrapulmonary arteries were pre-contracted with 5-HT for concentration-response curves to compound 17b and 43, and standard-of-care drugs, sildenafil, iloprost and riociguat. Compound 17b-mediated relaxation was assessed with FPR antagonists or inhibitors and in PCLS treated with TNF-α or LPS. Cytokine release from TNF-α- or LPS-treated PCLS ± compound 17b was measured.
Key Results: Compound 17b elicited concentration-dependent vasodilation, with potencies of iloprost > compound 17b = riociguat > compound 43 = sildenafil. Compound 17b was inhibited by the FPR1 antagonist cyclosporin H but not by soluble guanylate cyclase, nitric oxide synthase or cyclooxygenase inhibitors. Under inflammatory conditions, the efficacy and potency of compound 17b were maintained, while iloprost and sildenafil were less effective. Additionally, compound 17b inhibited secretion of PAH-relevant cytokines via FPR2.
Conclusions and Implications: Vasodilation to compound 17b but not standard-of-care vasodilators, is maintained under inflammatory conditions, with additional inhibition of PAH-relevant cytokine release. This provides the first evidence that targeting FPR, with biased agonist, simultaneously targets vascular function and inflammation, supporting the development of FPR-based pharmacotherapy to treat PAH.
Linked Articles: This article is part of a themed issue Therapeutic Targeting of G Protein-Coupled Receptors: hot topics from the Australasian Society of Clinical and Experimental Pharmacologists and Toxicologists 2021 Virtual Annual Scientific Meeting. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v181.14/issuetoc.
(© 2023 The Authors. British Journal of Pharmacology published by John Wiley & Sons Ltd on behalf of British Pharmacological Society.)
References: Alexander, S. P., Christopoulos, A., Davenport, A. P., Kelly, E., Mathie, A., Peters, J. A., Veale, E. L., Armstrong, J. F., Faccenda, E., Harding, S. D., Pawson, A. J., Southan, C., Davies, J. A., Abbracchio, M. P., Alexander, W., Al‐hosaini, K., Bäck, M., Barnes, N. M., Bathgate, R., … Ye, R. D. (2021). THE CONCISE GUIDE TO PHARMACOLOGY 2021/22: G protein‐coupled receptors. British Journal of Pharmacology, 178(S1), S27–S156. https://doi.org/10.1111/bph.15538.
Alexander, S. P. H., Roberts, R. E., Broughton, B. R. S., Sobey, C. G., George, C. H., Stanford, S. C., Cirino, G., Docherty, J. R., Giembycz, M. A., Hoyer, D., Insel, P. A., Izzo, A. A., Ji, Y., MacEwan, D. J., Mangum, J., Wonnacott, S., & Ahluwalia, A. (2018). Goals and practicalities of immunoblotting and immunohistochemistry: A guide for submission to the British Journal of Pharmacology. British Journal of Pharmacology, 175(3), 407–411. https://doi.org/10.1111/bph.14112.
Benza, R. L., Miller, D. P., Barst, R. J., Badesch, D. B., Frost, A. E., & McGoon, M. D. (2012). An evaluation of long‐term survival from time of diagnosis in pulmonary arterial hypertension from the REVEAL Registry. Chest, 142(2), 448–456. https://doi.org/10.1378/chest.11-1460.
Calvello, R., Cianciulli, A., Porro, C., Moda, P., De Nuccio, F., Nicolardi, G., Giannotti, L., Panaro, M. A., & Lofrumento, D. D. (2021). Formyl peptide receptor (FPR)1 modulation by resveratrol in an LPS‐induced neuroinflammatory animal model. Nutrients, 13, 1418. https://doi.org/10.3390/nu13051418.
Chamorro, V., Morales‐Cano, D., Milara, J., Barreira, B., Moreno, L., Callejo, M., Mondejar‐Parreño, G., Esquivel‐Ruiz, S., Cortijo, J., Cogolludo, Á., Barberá, J. A., & Perez‐Vizcaino, F. (2018). Riociguat versus sildenafil on hypoxic pulmonary vasoconstriction and ventilation/perfusion matching. PLoS ONE, 13(1), e0191239. https://doi.org/10.1371/journal.pone.0191239.
Cilibrizzi, A., Quinn, M. T., Kirpotina, L. N., Schepetkin, I. A., Holderness, J., Ye, R. D., Rabiet, M. J., Biancalani, C., Cesari, N., Graziano, A., Vergelli, C., Pieretti, S., Dal Piaz, V., & Giovannoni, M. P. (2009). 6‐Methyl‐2,4‐disubstituted pyridazin‐3(2H)‐ones: A novel class of small‐molecule agonists for formyl peptide receptors. Journal of Medicinal Chemistry, 52(16), 5044–5057. https://doi.org/10.1021/jm900592h.
Correale, M., Ferraretti, A., Monaco, I., Grazioli, D., Di Biase, M., & Brunetti, N. D. (2018). Endothelin‐receptor antagonists in the management of pulmonary arterial hypertension: Where do we stand? Vascular Health and Risk Management, 14, 253–264. https://doi.org/10.2147/VHRM.S133921.
Curtis, M. J., Alexander, S., Cirino, G., Docherty, J. R., George, C. H., Giembycz, M. A., Hoyer, D., Insel, P. A., Izzo, A. A., Ji, Y., MacEwan, D. J., Sobey, C. G., Stanford, S. C., Teixeira, M. M., Wonnacott, S., & Ahluwalia, A. (2018). Experimental design and analysis and their reporting II: Updated and simplified guidance for authors and peer reviewers. British Journal of Pharmacology, 175(7), 987–993. https://doi.org/10.1111/bph.14153.
Curtis, M. J., Alexander, S. P. H., Cirino, G., George, C. H., Kendall, D. A., Insel, P. A., Izzo, A. A., Ji, Y., Panettieri, R. A., Patel, H. H., Sobey, C. G., Stanford, S. C., Stanley, P., Stefanska, B., Stephens, G. J., Teixeira, M. M., Vergnolle, N., & Ahluwalia, A. (2022). Planning experiments: Updated guidance on experimental design and analysis and their reporting III. British Journal of Pharmacology, 179, 3907–3913. https://doi.org/10.1111/bph.15868.
Deora, G. S., Qin, C. X., Vecchio, E. A., Debono, A. J., Priebbenow, D. L., Brady, R. M., Beveridge, J., Teguh, S. C., Deo, M., May, L. T., Krippner, G., Ritchie, R. H., & Baell, J. B. (2019). Substituted pyridazin‐3(2H)‐ones as highly potent and biased formyl peptide receptor agonists. Journal of Medicinal Chemistry, 62(10), 5242–5248. https://doi.org/10.1021/acs.jmedchem.8b01912.
El‐Awady, M. S. H., Smirnov, S. V., & Watson, M. L. (2008). Desensitization of the soluble guanylyl cyclase/cGMP pathway by lipopolysaccharide in rat isolated pulmonary artery but not aorta. British Journal of Pharmacology, 155(8)1164–1173. https://doi.org/10.1038/bjp.2008.358.
Filep, J. G., Sekheri, M., & El Kebir, D. (2018). Targeting formyl peptide receptors to facilitate the resolution of inflammation. European Journal of Pharmacology, 833, 339–348. https://doi.org/10.1016/j.ejphar.2018.06.025.
Foudi, N., Ozen, G., Amgoud, Y., Louedec, L., Choqueux, C., Badi, A., Kotelevets, L., Chastre, E., Longrois, D., & Norel, X. (2017). Decreased vasorelaxation induced by iloprost during acute inflammation in human internal mammary artery. European Journal of Pharmacology, 804, 31–37. https://doi.org/10.1016/j.ejphar.2017.03.060.
Groth, A., Vrugt, B., Brock, M., Speich, R., Ulrich, S., & Huber, L. C. (2014). Inflammatory cytokines in pulmonary hypertension. Respiratory Research, 15, 47. https://doi.org/10.1186/1465-9921-15-47.
Hanthazi, A., Jespers, P., Vegh, G., Degroot, G. N., Springael, J. Y., Lybaert, P., Dewachter, L., & Mc Entee, K. (2019). Chemerin influences endothelin‐ and serotonin‐induced pulmonary artery vasoconstriction in rats. Life Sciences, 231, 116580. https://doi.org/10.1016/j.lfs.2019.116580.
Hensley, M. K., Levine, A., Gladwin, M. T., & Lai, Y.‐C. (2018). Emerging therapeutics in pulmonary hypertension. American Journal of Physiology. Lung Cellular and Molecular Physiology, 314(5), L769–L781. https://doi.org/10.1152/ajplung.00259.2017.
Hiram, R., Rizcallah, E., Marouan, S., Sirois, C., Sirois, M., Morin, C., Fortin, S., & Rousseau, E. (2015). Resolvin E1 normalizes contractility, Ca2+ sensitivity and smooth muscle cell migration rate in TNF‐α‐ and IL‐6‐pretreated human pulmonary arteries. American Journal of Physiology. Lung Cellular and Molecular Physiology, 309(8), L776–L788. https://doi.org/10.1152/ajplung.00177.2015.
Hu, L., Zhao, C., Chen, Z., Hu, G., Li, X., & Li, Q. (2022). An emerging strategy for targeted therapy of pulmonary arterial hypertension: Vasodilation plus vascular remodeling inhibition. Drug Discovery Today, 27(5), 1457–1463. https://doi.org/10.1016/j.drudis.2022.01.011.
Humbert, M., Kovacs, G., Hoeper, M. M., Badagliacca, R., Berger, R. M. F., Brida, M., Carlsen, J., Coats, A. J. S., Escribano‐Subias, P., Ferrari, P., Ferreira, D. S., Ghofrani, H. A., Giannakoulas, G., Kiely, D. G., Mayer, E., Meszaros, G., Nagavci, B., Olsson, K. M., Pepke‐Zaba, J., … the ESC/ERS Scientific Document Group. (2023). 2022 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension. The European Respiratory Journal, 61, 2200879. https://doi.org/10.1183/13993003.00879-2022.
Humbert, M., Sitbon, O., Yaici, A., Montani, D., O'Callaghan, D. S., Jais, X., Parent, F., Savale, L., Natali, D., Gunther, S., Chaouat, A., Chabot, F., Cordier, J. F., Habib, G., Gressin, V., Jing, Z. C., Souza, R., Simonneau, G., & on behalf of the French Pulmonary Arterial Hypertension Network. (2010). Survival in incident and prevalent cohorts of patients with pulmonary arterial hypertension. The European Respiratory Journal, 36(3), 549–555. https://doi.org/10.1183/09031936.00057010.
Itoh, T., Nagaya, N., Ishibashi‐Ueda, H., Kyotani, S., Oya, H., Sakamaki, F., Kimura, H., & Nakanishi, N. (2006). Increased plasma monocyte chemoattractant protein‐1 level in idiopathic pulmonary arterial hypertension. Respirology, 11(2), 158–163. https://doi.org/10.1111/j.1440-1843.2006.00821.x.
Jain, P. P., Leitinger, G., Leber, R., Nagaraj, C., Lehofer, B., Olschewski, H., Olschewski, A., Prassl, R., & Marsh, L. (2014). Liposomal nanoparticles encapsulating iloprost exhibit enhanced vasodilation in pulmonary arteries. International Journal of Nanomedicine, 9, 3249–3261. https://doi.org/10.2147/IJN.S63190.
Kozlowska, H., Baranowska‐Kuczko, M., Schlicker, E., Kozlowski, M., Kloza, M., & Malinowska, B. (2013). Relaxation of human pulmonary arteries by PPARγ agonists. Naunyn‐Schmiedeberg's Archives of Pharmacology, 386(5), 445–453. https://doi.org/10.1007/s00210-013-0846-3.
Kumar, A., & Neema, P. K. (2017). Severe pulmonary hypertension and right ventricular failure. Indian Journal of Anaesthesia, 61(9), 753–759. https://doi.org/10.4103/ija.IJA_420_17.
Lam, M., Royce, S. G., Donovan, C., Jelinic, M., Parry, L. J., Samuel, C. S., & Bourke, J. E. (2016). Serelaxin elicits bronchodilation and enhances β‐adrenoceptor‐mediated airway relaxation. Frontiers in Pharmacology, 7, 406. https://doi.org/10.3389/fphar.2016.00406.
Li, A., Varney, M. L., Valasek, J., Godfrey, M., Dave, B. J., & Singh, R. K. (2005). Autocrine role of interleukin‐8 in induction of endothelial cell proliferation, survival, migration and MMP‐2 production and angiogenesis. Angiogenesis, 8(1), 63–71. https://doi.org/10.1007/s10456-005-5208-4.
Li, Y., Connolly, M., Nagaraj, C., Tang, B., Bálint, Z., Popper, H., Smolle‐Juettner, F. M., Lindenmann, J., Kwapiszewska, G., Aaronson, P. I., Wohlkoenig, C., Leithner, K., Olschewski, H., & Olschewski, A. (2012). Peroxisome proliferator‐activated receptor‐β/δ, the acute signaling factor in prostacyclin‐induced pulmonary vasodilation. American Journal of Respiratory Cell and Molecular Biology, 46(3), 372–379. https://doi.org/10.1165/rcmb.2010-0428OC.
Lilley, E., Stanford, S. C., Kendall, D. E., Alexander, S. P., Cirino, G., Docherty, J. R., George, C. H., Insel, P. A., Izzo, A. A., Ji, Y., Panettieri, R. A., Sobey, C. G., Stefanska, B., Stephens, G., Teixeira, M., & Ahluwalia, A. (2020). ARRIVE 2.0 and the British Journal of Pharmacology: Updated guidance for 2020. British Journal of Pharmacology, 177(16), 3611–3616. https://doi.org/10.1111/bph.15178.
Liu, G., Betts, C., Cunoosamy, D. M., Aberg, P. M., Hornberg, J. J., Sivars, K. B., & Cohen, T. S. (2019). Use of precision cut lung slices as a translational model for the study of lung biology. Respiratory Research, 20(1), 162. https://doi.org/10.1186/s12931-019-1131-x.
Manoury, B., Lamalle, C., Oliveira, R., Reid, J., & Gurney, A. M. (2011). Contractile and electrophysiological properties of pulmonary artery smooth muscle are not altered in TASK‐1 knockout mice. The Journal of Physiology, 589(13), 3231–3246. https://doi.org/10.1113/jphysiol.2011.206748.
Marshall, S. A., Qin, C. X., Jelinic, M., O'Sullivan, K., Deo, M., Walsh, J., Li, M., Parry, L. J., Ritchie, R. H., & Leo, C. H. (2020). The novel small‐molecule annexin‐A1 mimetic, compound 17b, elicits vasoprotective actions in streptozotocin‐induced diabetic mice. International Journal of Molecular Sciences, 21, 1384. https://doi.org/10.3390/ijms21041384.
Martin, C., Held, H. D., & Uhlig, S. (2000). Differential effects of the mixed ETA/ETB‐receptor antagonist bosentan on endothelin‐induced bronchoconstriction, vasoconstriction and prostacyclin release. Naunyn‐Schmiedeberg's Archives of Pharmacology, 362(2), 128–136. https://doi.org/10.1007/s002100000264.
Mondéjar‐Parreño, G., Moral‐Sanz, J., Barreira, B., De la Cruz, A., Gonzalez, T., Callejo, M., Esquivel‐Ruiz, S., Morales‐Cano, D., Moreno, L., Valenzuela, C., Perez‐Vizcaino, F., & Cogolludo, A. (2019). Activation of Kv7 channels as a novel mechanism for NO/cGMP‐induced pulmonary vasodilation. British Journal of Pharmacology, 176(13), 2131–2145. https://doi.org/10.1111/bph.14662.
Neumann, P., Gertzberg, N., & Johnson, A. (2004). TNF‐α induces a decrease in eNOS promoter activity. American Journal of Physiology. Lung Cellular and Molecular Physiology, 286(2), L452–L459. https://doi.org/10.1152/ajplung.00378.2002.
Park, S. H., Choi, H.‐J., Lee, S. Y., & Han, J.‐S. (2015). TLR4‐mediated IRAK1 activation induces TNF‐α expression via JNK‐dependent NF‐κB activation in human bronchial epithelial cells. European Journal of Inflammation, 13(3), 183–195. https://doi.org/10.1177/1721727x15619185.
Percie du Sert, N., Hurst, V., Ahluwalia, A., Alam, S., Avey, M. T., Baker, M., Browne, W. J., Clark, A., Cuthill, I. C., Dirnagl, U., Emerson, M., Garner, P., Holgate, S. T., Howells, D. W., Karp, N. A., Lazic, S. E., Lidster, K., MacCallum, C. J., Macleod, M., … Würbel, H. (2020). The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research. PLoS Biology, 18(7), e3000410. https://doi.org/10.1371/journal.pbio.3000410.
Perez, J. F., & Sanderson, M. J. (2005). The contraction of smooth muscle cells of intrapulmonary arterioles is determined by the frequency of Ca2+ oscillations induced by 5‐HT and KCl. The Journal of General Physiology, 125(6), 555–567. https://doi.org/10.1085/jgp.200409217.
Qin, C., Buxton, K. D., Pepe, S., Cao, A. H., Venardos, K., Love, J. E., Kaye, D. M., Yang, Y. H., Morand, E. F., & Ritchie, R. H. (2013). Reperfusion‐induced myocardial dysfunction is prevented by endogenous annexin‐A1 and its N‐terminal‐derived peptide Ac‐ANX‐A1(2‐26). British Journal of Pharmacology, 168(1), 238–252. https://doi.org/10.1111/j.1476-5381.2012.02176.x.
Qin, C., Yang, Y. H., May, L., Gao, X., Stewart, A. G., Tu, Y., Woodman, O. L., & Ritchie, R. H. (2015). Cardioprotective potential of annexin‐A1 mimetics in myocardial infarction. Pharmacology & Therapeutics, 148, 47–65. https://doi.org/10.1016/j.pharmthera.2014.11.012.
Qin, C. X., May, L. T., Li, R., Cao, N., Rosli, S., Deo, M., Alexander, A. E., Horlock, D., Bourke, J. E., Yang, Y. H., Stewart, A. G., Kaye, D. M., du, X. J., Sexton, P. M., Christopoulos, A., Gao, X. M., & Ritchie, R. H. (2017). Small‐molecule‐biased formyl peptide receptor agonist compound 17b protects against myocardial ischaemia‐reperfusion injury in mice. Nature Communications, 8, 14232. https://doi.org/10.1038/ncomms14232.
Qin, C. X., Norling, L. V., Vecchio, E. A., Brennan, E. P., May, L. T., Wootten, D., Godson, C., Perretti, M., & Ritchie, R. H. (2022). Formylpeptide receptor 2: Nomenclature, structure, signalling and translational perspectives: IUPHAR review 35. British Journal of Pharmacology, 179, 4617–4639. https://doi.org/10.1111/bph.15919.
Selimovic, N., Bergh, C. H., Andersson, B., Sakiniene, E., Carlsten, H., & Rundqvist, B. (2009). Growth factors and interleukin‐6 across the lung circulation in pulmonary hypertension. The European Respiratory Journal, 34(3), 662–668. https://doi.org/10.1183/09031936.00174908.
Seo, J. K., Choi, S. Y., Kim, Y., Baek, S. H., Kim, K. T., Chae, C. B., Lambeth, J. D., Suh, P. G., & Ryu, S. H. (1997). A peptide with unique receptor specificity: Stimulation of phosphoinositide hydrolysis and induction of superoxide generation in human neutrophils. Journal of Immunology, 158(4), 1895–1901. https://doi.org/10.4049/jimmunol.158.4.1895.
Shao, G., Julian, M. W., Bao, S., McCullers, M. K., Lai, J. P., Knoell, D. L., & Crouser, E. D. (2011). Formyl peptide receptor ligands promote wound closure in lung epithelial cells. American Journal of Respiratory Cell and Molecular Biology, 44(3), 264–269. https://doi.org/10.1165/rcmb.2010-0246RC.
Shu, T., Zhang, J., Zhou, Y., Chen, Z., Li, J., Tang, Q., Lei, W., Xing, Y., Wang, J., & Wang, C. (2023). Eosinophils protect against pulmonary hypertension through 14‐HDHA and 17‐HDHA. The European Respiratory Journal, 61, 2200582. https://doi.org/10.1183/13993003.00582-2022.
Steiner, M. K., Syrkina, O. L., Kolliputi, N., Mark, E. J., Hales, C. A., & Waxman, A. B. (2009). Interleukin‐6 overexpression induces pulmonary hypertension. Circulation Research, 104(2), 236–244. https://doi.org/10.1161/CIRCRESAHA.108.182014.
Stenfeldt, A. L., Karlsson, J., Wenneras, C., Bylund, J., Fu, H., & Dahlgren, C. (2007). Cyclosporin H, Boc‐MLF and Boc‐FLFLF are antagonists that preferentially inhibit activity triggered through the formyl peptide receptor. Inflammation, 30(6), 224–229. https://doi.org/10.1007/s10753-007-9040-4.
Strange, G., Lau, E. M., Giannoulatou, E., Corrigan, C., Kotlyar, E., Kermeen, F., Williams, T., Celermajer, D. S., Dwyer, N., Whitford, H., Wrobel, J. P., Feenstra, J., Lavender, M., Whyte, K., Collins, N., Steele, P., Proudman, S., Thakkar, V., Keating, D., … PHSANZ Registry. (2018). Survival of idiopathic pulmonary arterial hypertension patients in the modern era in Australia and New Zealand. Heart, Lung & Circulation, 27(11), 1368–1375. https://doi.org/10.1016/j.hlc.2017.08.018.
Toxvig, A. K., Wehland, M., Grimm, D., Infanger, M., & Kruger, M. (2019). A focus on riociguat in the treatment of pulmonary arterial hypertension. Basic & Clinical Pharmacology & Toxicology, 125(3), 202–214. https://doi.org/10.1111/bcpt.13272.
Tuder, R. M., Cool, C. D., Geraci, M. W., Wang, J., Abman, S. H., Wright, L., Badesch, D., & Voelkel, N. F. (1999). Prostacyclin synthase expression is decreased in lungs from patients with severe pulmonary hypertension. American Journal of Respiratory and Critical Care Medicine, 159(6), 1925–1932. https://doi.org/10.1164/ajrccm.159.6.9804054.
Williams, L. T., Snyderman, R., Pike, M. C., & Lefkowitz, R. J. (1977). Specific receptor sites for chemotactic peptides on human polymorphonuclear leukocytes. Proceedings of the National Academy of Sciences of the United States of America, 74(3), 1204–1208. https://doi.org/10.1073/pnas.74.3.1204.
Wright, J. L., & Churg, A. (2008). Short‐term exposure to cigarette smoke induces endothelial dysfunction in small intrapulmonary arteries: Analysis using guinea pig precision cut lung slices. Journal of Applied Physiology (Bethesda, MD: 1985), 104(5), 1462–1469. https://doi.org/10.1152/japplphysiol.00520.2007.
Zhang, S., Gong, H., Ge, Y., & Ye, R. D. (2020). Biased allosteric modulation of formyl peptide receptor 2 leads to distinct receptor conformational states for pro‐ and anti‐inflammatory signaling. Pharmacological Research, 161, 105117. https://doi.org/10.1016/j.phrs.2020.105117.
Zheng, W., Wang, Z., Jiang, X., Zhao, Q., & Shen, J. (2020). Targeted drugs for treatment of pulmonary arterial hypertension: Past, present, and future perspectives. Journal of Medicinal Chemistry, 63, 15153–15186. https://doi.org/10.1021/acs.jmedchem.0c01093.
معلومات مُعتمدة: ID1187989 National Health and Medical Research Council; Victorian Government of Australia's Operational Infrastructure Support Program; National Heart Foundation of Australia Future Leader Fellowship; Australian Government Research Training Program (RTP) Scholarship
فهرسة مساهمة: Keywords: formyl peptide receptor; inflammation; precision‐cut lung slice; pulmonary arterial hypertension; respiratory pharmacology; vasodilation
المشرفين على المادة: 0 (Receptors, Formyl Peptide)
0 (Vasodilator Agents)
0 (Anti-Inflammatory Agents)
تواريخ الأحداث: Date Created: 20230902 Date Completed: 20240619 Latest Revision: 20240625
رمز التحديث: 20240626
DOI: 10.1111/bph.16231
PMID: 37658546
قاعدة البيانات: MEDLINE
الوصف
تدمد:1476-5381
DOI:10.1111/bph.16231