دورية أكاديمية

Nichima gen. nov. (Alismataceae) based on reproductive structures from the Oligocene-Miocene of Mexico.

التفاصيل البيبلوغرافية
العنوان: Nichima gen. nov. (Alismataceae) based on reproductive structures from the Oligocene-Miocene of Mexico.
المؤلفون: Hernández-Sandoval L; Licenciatura en Biología, LANIVEG, Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Av. de las Ciencias s/n, Juriquilla, 76230, Querétaro, Querétaro, México., Cevallos-Ferriz SRS; Departamento de Paleontología, Instituto de Geología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Circuito de la Investigación Científica, Coyoacán, 04510, CDMX, México., Hernández-Damián AL; Departamento de Paleontología, Instituto de Geología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Circuito de la Investigación Científica, Coyoacán, 04510, CDMX, México.
المصدر: American journal of botany [Am J Bot] 2023 Oct; Vol. 110 (10), pp. e16231. Date of Electronic Publication: 2023 Oct 16.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Wiley Country of Publication: United States NLM ID: 0370467 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1537-2197 (Electronic) Linking ISSN: 00029122 NLM ISO Abbreviation: Am J Bot Subsets: MEDLINE
أسماء مطبوعة: Publication: <2018-> : [Philadelphia, PA] : Wiley
Original Publication: Baltimore Md : Botanical Society Of America
مواضيع طبية MeSH: Alismataceae*, Phylogeny ; Mexico ; Amber ; Flowers ; Fossils
مستخلص: Premise: Alismataceae, a sub-cosmopolitan family with ca. 17 genera and 113 species, is a large group of aquatic plants. Compression/impressions and bioinclusions of reproductive parts in amber support the documentation of the lineage in low-latitude North America. In Mexico, fossil aquatic plants have been infrequently documented. The new reproductive structures exhibit characteristics of Alismataceae, whose fossil record is mainly documented in the northern hemisphere through of fruits and seeds.
Methods: We described and compared 150 samples of reproductive structures preserved as impressions/compressions from the Oligocene Los Ahuehuetes locality in the state of Puebla, and two bioinclusions from the Miocene amber of Simojovel de Allende in the state of Chiapas, Mexico with extinct and extant taxa. Using a parsimony analysis based on 29 floral characters of 17 extant genera of the Alismataceae, we evaluated the relationship between the fossil material and potential living relatives.
Results: We discovered a new genus Nichima based on a perfect, actinomorphic flower with an expanded receptacle, three persistent sepals with multiple vasculatures, delicate and caducous petals, six stamens, and a gynoecium composed of three to more superior carpels, maturing into achenes. These characteristics resemble flowers of Alismataceae. Nichima represents an extinct member of the family, with two new species described here, Nichima magalloniae L. Hern., Cevallos-Ferriz et Hernández-Damián sp. nov. and Nichima gonzalez-medranoi L. Hern., Cevallos-Ferriz et Hernández-Damián, sp. nov. Their phylogenetic position suggests affinity with a clade that includes Baldiella, Echinodorus, and Alisma.
Conclusions: Reproductive structures from the Cenozoic of Mexico support the identification of a new extinct genus, Nichima, evidencing the extensive history of Alismataceae in North America's low latitudes and suggesting a southern extension of the boreotropical flora.
(© 2023 The Authors. American Journal of Botany published by Wiley Periodicals LLC on behalf of Botanical Society of America.)
References: Allen, S. 2015. Fossil palm flowers from the Eocene of the Rocky Mountain region with affinities to Phoenix l. (Arecaceae: Coryphoideae). International Journal of Plant Sciences 176: 586-596.
Allison, R. C. 1967. The Cenozoic stratigraphy of Chiapas, México, with discussions of the classification of the Turritellidae and selected Mexican representatives: Ph.D. dissertation, University of California, Berkeley, CA, USA.
Ancibor, E. 1979. Systematic anatomy of vegetative organs of the Hydrocharitaceae. Botanical Journal of the Linnean Society 78: 237-266.
Argue, C. L. 1973. The pollen of Limnocharis flava Buch., Hydrocleis nymphoides (Willd.) Buch., and Tenagocharis latifolia (Don) Buch. (Limnocharitaceae). Grana 13: 108-112.
Beraldi-Campesi, H., S. R. S. Cevallos-Ferriz, E. Centeno-García, C. Arenas-Abad, and L. P. Fernández. 2006. Sedimentology and paleoecology of fan Eocene-Oligocene alluvial-lacustrine arid system, southern Mexico. Sedimentary Geology 191: 227e254.
Berry, E. W. 1911. Contributions to the Mesozoic flora of the Atlantic coastal plain. VII. Bulletin of the Torrey Botanical Club 38: 399-424.
Berry, E. W. 1925. Miocene Araceae related to Caladium from Trinidad. Pan-American Geologist 44: 38-42.
Bousfield, E. L. and G. O. Poinar. 1994. A new terrestrial amphipod from Tertiary amber deposits of Chiapas province, southern Mexico. Historical Biology 7: 105-114.
Brown, R. W. 1962. Paleocene flora of the Rocky Mountains and Great Plains. United States Geological Survey Professional Paper 375: 1-119.
Calvillo-Canadell, L., and S. R. S. Cevallos-Ferriz. 2005. Diverse assemblage of Eocene and Oligocene Leguminosae from Mexico. International Journal of Plant Sciences 166: 671-692.
Cameron, K. M., M. W. Chase, and P. J. Rudall. 2003. Recircumscription of the monocotyledonous family Petrosaviaceae to include Japonolirion. Brittonia 55: 214-225.
Castañeda-Posadas, C., and S. R. S. Cevallos-Ferriz. 2007. Swietenia (Meliaceae) flower in Late Oligocene-Early Miocene amber from Simojovel de Allende, Chiapas, Mexico. American Journal of Botany 94: 1821-1827.
Cevallos-Ferriz, S. R. S., A. L. Hernández-Damián, H. Beraldi-Campesi, M. A. Ruvalcaba-Knoth, and A. R. Huerta-Vergara. 2022. Paleobotany to understand evolution and biodiversity in Mexico. Botanical Sciences 100: S34-S65.
Chanda, S., S. Nilsson, and S. Blackmore. 1988. Phylogenetic trends in the Alismatales with reference to pollen grains. Grana 27: 257-272.
Chandler, M. E. J. 1963. The Lower Tertiary floras of southern England. III. Flora of the Bournemouth Beds, the Boscombe, and the Highcliff Sands. British Museum (Natural History), London, UK.
Charlton, W. A. 1991. Studies in the Alismataceae. IX. Development of the flower in Ranalisma humile. Canadian Journal of Botany 69: 2790-2796.
Charlton, W. A. 1999. Studies in the Alismataceae. X. Floral organogenesis in Luronium natans (L.) Raf. Canadian Journal of Botany 77: 1560-1568.
Chen, L.-Y., B. Lu, D. F. Morales-Briones, M. L. Moody, F. Liu, G.-W. Hu, C.-H. Huang, et al. 2022. Phylogenomic analyses of Alismatales shed light into adaptations to aquatic environments. Molecular Biology and Evolution 39: msac079.
Cook, C. D. K. 1998. Butomaceae. The families and genera of vascular plants. In K. Kubitski, H. Huber, P. J. Rudall, P. S. Stevens, and T. Stützel [eds.], IV, Flowering plants. Monocotyledons, Alismantanae and Commelinanae (except Gramineae), 100-102. Springer-Verlag, Berlin, Germany.
Cook, C. D. K. 1990. Aquatic plant book. SPB Academic, The Hague, Netherlands.
Daghlian, C. P. 1981. A review of the fossil record of the monocotyledons. Botanical Review 47: 517-555.
Dahlgren, R., T. Clifford, and P. Yeo. 1985. The families of monocotyledons. Springer-Verlag, Berlin, Germany.
de Egea Elsam, J. 2015. Familia Alismataceae. In F. M. Mereles, J. De Egea Elsam, M. C. Peña-Chocarro, and R. Degen de Arrúa [eds.], Plantas acuáticas y palustres del Paraguay. Rojasiana Serie Especial 2: 86-97.
DiMichele, W. A., and R. A., Gastaldo. 2008. Plant paleoecology in deep time. Annals of the Missouri Botanical Garden 95: 144-198.
Dorofeev, P. I. 1963. The Tertiary floras of western Siberia. Izdvo Akademii Nauk SSSR, Moscow, Leningrad, Russia, Russian Academy of Sciences, USSR. 271 [in Russian].
Doyle, J. A. 2012. Molecular and fossil evidence on the origin of Angiosperms. Annual Review of Earth and Planetary Sciences 40: 301-326.
Dransfield, J., N. W. Uhl, C. B. Asmussen, W. J. Baker, M. M. Harley, and C. E. Lewis. 2008. Genera palmarum: the evolution and classification of palms. Royal Botanic Gardens, Kew, UK.
Eguchi, S., and M. N. Tamura. 2016. Evolutionary timescale of monocots determined by the fossilized birth-death model using a large number of fossil records. Evolution 70: 1136-1144.
Erwin, D. M., and R. A. Stockey. 1989. Permineralized monocotyledons from the Middle Eocene Princeton chert (Allenby Formation) of British Columbia: Alismataceae. Canadian Journal of Botany 67: 2636-2645.
Farris, J. S. 1970. Methods for computing Wagner trees. Systematic Zoology 19: 83-92.
Felsenstein, J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783-791.
Fitch, W. M. 1971. Toward defining the course of evolution. Minimal change for a specific tree topology. Systematic Biology 20: 406-416.
Friis, E. M., P. R. Crane, and K. R. Pedersen. 2011. Early flowers and angiosperm evolution. Cambridge University Press, Cambridge, UK.
Furness, C. A., and H. Banks. 2010. Pollen evolution in the early-divergent monocot order Alismatales. International Journal of Plant Sciences 171: 713-739.
Gandolfo, M. A., K. C. Nixon, and W. L. Crepet. 2000. Monocotyledons: a review of their early Cretaceous record. In K. L. Wilson and D. A. Morrison [eds.], Monocots: systematics and evolution, 44-51. CSIRO Publishing, Collingwood, Victoria, Australia.
Gandolfo, M. A., M. C. Zamaloa, N. R. Cúneo, and A. Archangelsky. 2009. Potamogetonaceae fossil fruits from the Tertiary of Patagonia, Argentina. International Journal of Plant Sciences 170: 419-428.
Golovneva, L. B. 1997. Morphology, systematics, and distribution of the genus Haemanthophyllum in the Paleogene floras of the Northern Hemisphere. Paleontologischeskii Zhurnal 31: 197-207.
Guha, R., and M. S. Mondal. 2005. Wetland phytodiversity: a complete guide to Indian Helobieae. Scientific Publishers, Jodhpur, India.
Haggard, K. K., and B. H. Tiffney. 1997. The flora of the Early Miocene Brandon Lignite, Vermont, USA. VIII. Caldesia (Alismataceae). American Journal of Botany 84: 239-252.
Haynes, R. R., and L. B. Holm-Nielsen. 1994. The Alismataceae. Flora Neotropica. 64: 1-112.
Haynes, R. R., and D. H. Les. 2005. Alismatales (Water Plantains). In Encyclopedia of Life Sciences (eLS). Website: https://doi.org/10.1038/npg.els.0003702.
Haynes, R. R., D. H. Les, and L. B Holm-Nilsen. 1998a. Alismataceae. In K. Kubitski, H. Huber, P. J. Rudall, P. S. Stevens, and T. Stützel [eds.], The families and genera of vascular plants. IV. Flowering plants. Monocotyledons, Alismantanae and Commelinanae (except Gramineae), 11-18. Springer-Verlag, Berlin, Germany.
Haynes, R. R., D. H. Les, and L. B. Holm-Nilsen. 1998b. Limnocharitaceae. In K. Kubitski, H. Huber, P. J. Rudall, P. S. Stevens, and T. Stützel [eds.], The families and genera of vascular plants. IV. Flowering plants. Monocotyledons, Alismantanae and Commelinanae (except Gramineae), 271-274. Springer-Verlag, Berlin, Germany.
Hazarika, S., and S. K. Borthakur. 2015. Caldesia oligococca (F. von Mueller) Buchenau [Alismataceae]: a new record for Assam in India. Pleione 9: 103-106.
Herendeen, P. S., and P. R. Crane. 1995. The fossil history of the monocotyledons. In P. J. Ruddall, P. J. Cribb, D. F. Cutler, and C. J. Humphries [eds.], Monocotyledons: systematics and evolution, 1-21. Royal Botanic Gardens, Kew, UK.
Hernández-Damián, A. L., S. R. S. Cevallos-Ferriz, and A. R. Huerta-Vergara. 2017. Fossil flower of Staphylea L. preserved in amber from Miocene of Mexico, new evidence of the Flora Boreo tropical in low latitudes of America. Earth and Environmental Science Transactions of The Royal Society of Edinburgh 108: 471-478.
Holmes, S. 2003. Bootstrapping phylogenetic trees: theory and methods. Statistical Science 18: 241-255.
Irish, V. 2017. The ABC model of floral development. Current Biology 27: R853-R909.
Iwamoto, A., A. Nakamura, S. Kurihara, A. Otani, and L. P. Ronse De Craene. 2018. Floral development of petaloid Alismatales as an insight into the origin of the trimerous Bauplan in monocot flowers. Journal of Plant Research 131: 395-407.
Jacobs, S. W. L. 1997. Astonia (Alismataceae), a new genus for Australia. Telopea 7: 139-141.
Jiménez, J. E. 2018. Guía de plantas comunes de los humedales del Áreas de Conservación Arenal - Huetar Norte -(ACAHN), Costa Rica. Sistema Nacional de Áreas de Conservación (SINAC)/Programa de Naciones Unidas para el Desarrollo (PNUD)/Fondo Mundial para el Medio Ambiente (GEF).
Katz, N. J. A., S. V. Katz, and M. G. Kipiani. 1965. Atlas and keys of fruits and seeds occurring in the Quaternary deposits of the USSR. Nauka, Moscow, Russia.
Kaul, R. B. 1967. Ontogeny and anatomy of the flower of Limnocharis flava (Butomaceae). American Journal of Botany 54: 1223-1230.
Kozlowski, G., R. Andrew Jones, and F.-L. Nicholls-Vuille. 2008. Biological flora of Central Europe: Baldellia ranunculoides (Alismataceae). Perspectives in Plant Ecology, Evolution and Systematics 10: 109-142.
Kvaček, Z. 2008. Whole-plant reconstructions in fossil angiosperm research. International Journal of Plant Sciences 169: 918-927.
Langenheim, J. H. 1966. Botanical source of amber from Chiapas, Mexico. Ciencia 24: 201-211.
Lehtonen, S., and E. Gordon. 2010. Actualización del conocimiento de los géneros Echinodorus y Helanthium (Alismataceae) en Venezuela. Acta Botanica Venezuelica 33: 249-272.
Lehtonen, S. 2009. Systematics of the Alismataceae-A morphological evaluation. Aquatic Botany 91: 279-290.
Lehtonen, S. 2018. Alismataceae. Flora del Paraguay, 49. Conservatoire et Jardin Botanique de la Ville de Genève, Geneva, Switzerland.
Leme, F., J. Bento, V. J. Fabiano, P. González, and R. D. C. de Oliveira Arruda. 2021. New aspects of secretory structures in five Alismataceae species: Laticifers or ducts? Plants 10: 2694.
Les, D. H., and N. P. Tippery. 2013. In time and with water … the systematics of alismatid monocotyledons. In P. Wilkin, and S. J. Mayo [eds.], Early events in monocot evolution, 118-164. Systematics Association Special Series. Cambridge University Press, Cambridge, UK.
Li, X., and Z. Zhou. 2009. Phylogenetic studies of the core Alismatales inferred from morphology and rbcL sequences. Progress in Natural Science 19: 931-945.
Li, Z. Z., S. Lehtonen, K. Martins, Q.-F. Wang, and J. M. Chen. 2022. Complete genus-level plastid phylogenomics of Alismataceae with revisited historical biogeography. Molecular Phylogenetics and Evolution 166: 107334.
Licari, G. R. 1960. Geology and amber deposits of the Simojovel Area, Chiapas, Mexico. M.S. thesis, University of California, Berkeley, CA, USA.
Liu, K.-M., L.-G. Lei, and G.-W. Hu. 2002. Developmental study on the inflorescence and flower of Caldesia grandis Samuel (Alismataceae). Botanical Journal of the Linnean Society 140: 39-47.
Magallón-Puebla, S., and S. R. S. Cevallos-Ferriz. 1993. A fossil earthstar (Geasteraceae; Gasteromycetes) from the Late Cenozoic of Puebla, México. American Journal of Botany 80: 1162-1167.
Magallón-Puebla, S., and S. R. S. Cevallos-Ferriz. 1994a. Eucommia constans n. sp. fruits from upper Cenozoic strata of Puebla, Mexico: morphological and anatomical comparison with Eucommia ulmoides Oliver. International Journal of Plant Science 155: 80-95.
Magallón-Puebla, S., and S. R. S. Cevallos-Ferriz. 1994b. Fossil legume fruits from Tertiary strata of Puebla, Mexico. Canadian Journal of Botany 72: 1027-1038.
Magallón-Puebla, S., and S. R. S. Cevallos-Ferriz. 1994c. Latest occurrence of the extinct genus Cedrelospermum (Ulmaceae) in North America: Cedrelospermum manchesteri from México. Review of Palaeobotany and Palynology 81: 115-128.
Mai, D. H. 1985. Entwicklung der Wasser- und Sumpfpflanzen-Gesellschaften Europas von Kreide bis Quartär. Flora 176: 449-511.
Mai, D. H. 2000. Die mittelmioziinen und obermioziinen Floren aus der Meuroer und Raunoer Folge in der Lausitz. Teil I: Farnpflanzen, Koniferen und Monokotyledonen. Palaeontographica B 256: 1-68.
Manchester, S., R. L. Calvillo-Canadell, and S. R. S. Cevallos-Ferriz, 2014. Assembling extinct plants from their isolated parts. Boletín de la Sociedad Geológica Mexicana 66: 53-63.
Martínez-Hernández, E., and E. Ramírez-Arriaga. 1996. Palaeocorología de angiospermas de la flora mexicana durante el Mesozoico y Terciario. Algunas evidencias palinológicas. Boletín de la Sociedad Botánica de México 58: 87-97.
McCullough, C. M. 1997. A review of the aquatic macrophyte family Hydrocharitaceae (Angiospermae) in New Zealand. Tane 36: 181-195.
Meneses-Rocha, J. J. 2001. Tectonic evolution of the Ixtapa graben, an example of a strike-slip basin in southeastern Mexico: Implications for regional petroleum systems. In C. Bartolini, R. T. Buffler, and A. Cantú-Chapa [eds.], The western Gulf of Mexico Basin: tectonics, sedimentary basins, and petroleum systems, 183-216. American Association of Petroleum Geologists, Tulsa, OK, USA.
Meyer, F. J. 1932. Beiträge zur Anatomie der Alismataceen. I. Die Blattanatomie von Echinodorus. Beih. Botanischen Centralblatt 49: 309-368.
Meyer, F. J. 1935. Untersuchungen an den Leitbiindelsystemen der Alismataceenbliitter als Beitriige zur Kenntnis der Bedingtheit und der Leitungen der Leitbiindel-Verbindungen. Planta 23: 557-592.
Muller, J. 1981. Fossil pollen of extant angiosperms. Botanical Review 47: 1-142.
Naturalista. 2021. Available at https://www.naturalist.mx [accessed 29 October 2022].
Novelo, A. 2003. Familia Alismataceae. In J. Rzedowski, and G. Calderón de Rzedowski [eds.], Flora del Bajío y de regiones adyacentes. Fascículo 111. Instituto de Ecología, A.C., Centro Regional del Bajío, Pátzcuaro, Michoacán, México.
Perrilliat, M., F. Vega, and M. Coutiño. 2010. Miocene mollusks from the Simojovel area in Chiapas, southwestern Mexico. Journal of South American Earth Sciences 30: 111-119.
Poinar, G. O 2003. Coelomycetes in Dominican and Mexican amber. Mycological Research 107: 117-122.
Poinar, G. O., and A. E. Brown. 2002. Hymenaea mexicana sp. nov. (Leguminosae: Caesalpinioideae) from Mexican amber indicates Old World connections. Botanical Journal of the Linnean Society 139: 125-132.
Ramírez, J. L., and S. R. Cevallos-Ferriz. 2000. Leaves of Berberidaceae (Berberis and Mahonia) from Oligocene sediments, near Tepexi de Rodríguez, Puebla. Review of Palaeobotany and Palynology 110: 247-257.
Ramírez-Garduño, J. L., and S. R. S. Cevallos-Ferriz. 2002. Adiverse assemblage of Anacardiaceae from the Oligocene sediments, Tepexi deRodríguez, Puebla, Mexico. American Journal of Botany 89: 535-545.
Remizowa, M., M. S. Nuraliev, L. V. Averyanov, A. N. Kuznetsov, and S. P. Kuznetsova. 2017. A revision of the family Petrosaviaceae in Vietnam. Nordic Journal of Botany 35: 262-271.
Remizowa, M., D. Sokoloff, and P. J. Rudall 2006. Evolution of the monocot gynoecium: evidence from comparative morphology and development in Tofieldia, Japonolirion, Petrosavia, and Narthecium. Plant Systematics and Evolution 258: 183-209.
Remizowa, M. V., A. N. Kuznetsov, S. P. Kuznetsova, P. J. Rudall, M. S. Nuraliev, and D. D. Sokoloff. 2012. Flower development and vasculature in Xyris grandis (Xyridaceae, Poales): a case study for examining petal diversity in monocot flowers with a double perianth. Botanical Journal of the Linnean Society 170: 93-111.
Riley, M. G., and R. A. Stockey. 2004. Cardstonia tolmanii gen. et sp. nov. (Limnochartitaceae) from the Upper Cretaceous of Alberta, Canada. International Journal of Plant Sciences 165: 897-916.
Ronse De Craene, L. P. 2010. Floral diagrams: an aid to understanding flower morphology and evolution. Cambridge University Press, Cambridge, UK.
Santiago-Blay, J. A., and G. O. Poinar. 1993. First scorpion (Buthidae: Centruroides) from Mexican amber (lower Miocene to upper Oligocene). Journal of Arachnology 21: 147-151.
Serrano-Sánchez, M. d. L., T. A. Hegna, P. Schaaf, L. Pérez, E. Centeno-García, and F. J. Vega. 2015. The aquatic and semiaquatic biota in Miocene amber from the Campo LA Granja mine (Chiapas, Mexico): paleoenvironmental implications. Journal of South American Earth Sciences 62: 243-256.
Silva-Romo, G. 2010. Origen tectónico y evolución de la Cuenca Tehuitzingo-Tepexi, estado de Puebla. Ph.D. dissertation, Universidad Nacional Autónoma de México, Mexico City, Mexico.
Silva-Romo, G., C. C. Mendoza-Rosales, E. Campos-Madrigal, Y. B. Hernandez-Marmolejo, O. A. de la Rosa-Mora, A. I. de la Torre-González, C. Bonifacio-Serralde, et al. 2018. Timing of the Cenozoic basins of Southern Mexico and its relationship with the Pacific truncation process: Subduction erosion or detachment of the Chortís block. Journal of South American Earth Sciences 83: 178-194.
Simpson, M. 2019. Plant systematics, 3rd ed. Elsevier-Academic Press, Amsterdam, Netherlands.
Smith, S. Y. 2013. The fossil record of noncommelinid monocots. In P. Wilkin and S. J. Mayo [eds.]. Early events in monocot evolution, 29-59. Cambridge University Press, Cambridge, UK.
Smith, S. Y., M. E. Collinson, P. J. Rudall, and D. A. Simpson. 2010. The Cretaceous and Paleogene fossil record of Poales: review and current research. In O. Seberg, G. Petersen, A. Barfod, and J. I. Davis [eds.], Diversity, phylogeny, and evolution in monocotyledons, 36-356. Aarhus University Press, Aarhus, Denmark.
Solórzano-Karemer, M. M., and W. Mohrig. 2007. Schwenckfeldina archoica sp. nov. (Diptera, Sciaridae) from the middle Miocene Mexican amber. Alavesia 1: 105-108.
Solórzano-Kraemer, M. M. 2007. Systematic, paleoecology and paleobiogeography of the insect fauna from the Mexican amber. Palaeontographica, Abteilung A 282: 1-33.
Solórzano-Kraemer, M. M. 2010. Mexican amber. In D. Penney [ed.], Biodiversity of fossils in amber from the major world deposits, 42-56. Siri Scientific Press, Manchester, UK.
Stant, M. Y. 1964. Anatomy of Alismataceae. Botanical Journal of the Linnean Society 59: 1-42.
Stant, M. Y. 1967. Anatomy of Butomaceae. Botanical Journal of the Linnean Society 60: 31-60.
Stevens, P. F. 2001 [onward]. Angiosperm phylogeny website, version 14, July 2017 [and more or less continuously updated]. Website: http://www.mobot.org/MOBOT/research/APweb [accessed 26 May 2023].
Stockey, R. A. 2006. The fossil record of basal monocots. Aliso 22: 91-106.
Swofford, D. L. 2002. PAUP*: phylogenetic analysis using parsimony (*and other methods), version 4.0 beta 10. Sinauer, Sunderland, MA, USA.
Takhtaian, A., V. Vakrameev, and G. P. Radchenko. 1963. Fundamentals of paleontology: gymnosperms and angiosperms. Akademii Nauk SSSR, Moscow, Russia.
Tanaka, N., K. Huehara, and J. Murata. 2004. Correlation between pollen morphology and pollination mechanisms in the Hydrocharitaceae. Journal of Plant Research 117: 265-276.
Thulin, M. [ed.]. 1995. Burnatia Micheli [family Alismataceae]. In Flora Somalia, 4. Royal Botanic Gardens, Kew, UK. Website: http://plants.jstor.org/stable/10.5555/al.ap.flora.flos003896.
Tomasini-Ortíz, A. C., and E. Martínez-Hernández. 1984. Palinología del Eoceno-Oligoceno de Simojovel, Chiapas. Paleontología Mexicana 50: 1-60.
Vega, F. J., M. A. Torrey-Nyborg, J. S. Coutaño, and O. Hernández-Monzón. 2009. Neogene Crustacea from southeastern Mexico. Bulletin of Mizunami Fossil Museum 35: 51-69.
Weyland, H. 1937. Beiträge zur Kentnnis der Reinischen Tertiäriflora. Paleontologica, Abteilung B 83: 67-122.
Wichard, W., M. M. Solórzano-Kraemer, and C. Luer. 2006. First caddisfly species from Mexican amber (Insecta: Trichoptera). Zootaxa 1378: 37-48.
Wodehouse, R. P. 1936. Pollen grains in the identification and classification of plants. VIII. The Alismataceae. American Journal of Botany 23: 535-539.
Wolfe, J. A. 1975. Some aspects of plant geography of the Northern Hemisphere during the late Cretaceous and Tertiary. Annals of the Missouri Botanical Garden 162: 264-279.
فهرسة مساهمة: Keywords: Cenozoic; Nichima; Statzia; boreotropical flora; fossil aquatic plant
المشرفين على المادة: 0 (Amber)
تواريخ الأحداث: Date Created: 20230904 Date Completed: 20231027 Latest Revision: 20231112
رمز التحديث: 20240628
DOI: 10.1002/ajb2.16231
PMID: 37661813
قاعدة البيانات: MEDLINE
الوصف
تدمد:1537-2197
DOI:10.1002/ajb2.16231