دورية أكاديمية

Anatomical characterisation of three different psychosurgical targets in the subthalamic area: from the basal ganglia to the limbic system.

التفاصيل البيبلوغرافية
العنوان: Anatomical characterisation of three different psychosurgical targets in the subthalamic area: from the basal ganglia to the limbic system.
المؤلفون: Santin MDN; Sorbonne Université, Institut du Cerveau-Paris Brain Institute- ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, 75013, Paris, France., Tempier N; Sorbonne Université, Institut du Cerveau-Paris Brain Institute- ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, 75013, Paris, France., Belaid H; Service de Neurochirurgie, Hôpital Fondation Adolphe de Rothschild, 29 rue Manin, Paris, France., Zenoni M; Sorbonne Université, Institut du Cerveau-Paris Brain Institute- ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, 75013, Paris, France., Dumas S; Oramacell, Paris, France., Wallén-Mackenzie Å; Department of Organismal Biology, Unit of Comparative Physiology, Uppsala University, S-756 32, Uppsala, Sweden., Bardinet E; Sorbonne Université, Institut du Cerveau-Paris Brain Institute- ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, 75013, Paris, France., Destrieux C; UMR Inserm U1253, IBrain, Université de Tours, Tours, France.; Laboratoire d'Anatomie, Faculté de Médecine, Université François Rabelais, Tours, France., François C; Sorbonne Université, Institut du Cerveau-Paris Brain Institute- ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, 75013, Paris, France., Karachi C; Sorbonne Université, Institut du Cerveau-Paris Brain Institute- ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, 75013, Paris, France. carine.karachi@gmail.com.; AP-HP, Hôpital de la Pitié-Salpêtrière, Service de Neurochirurgie, Paris, France. carine.karachi@gmail.com.
المصدر: Brain structure & function [Brain Struct Funct] 2023 Nov; Vol. 228 (8), pp. 1977-1992. Date of Electronic Publication: 2023 Sep 05.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Springer-Verlag Country of Publication: Germany NLM ID: 101282001 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1863-2661 (Electronic) Linking ISSN: 18632653 NLM ISO Abbreviation: Brain Struct Funct Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Berlin : Springer-Verlag, c2007-
مواضيع طبية MeSH: Limbic System* , Basal Ganglia*, Humans ; Animals ; Brain ; Medial Forebrain Bundle ; Dopamine ; Macaca
مستخلص: Effective neural stimulation for the treatment of severe psychiatric disorders needs accurate characterisation of surgical targets. This is especially true for the medial subthalamic region (MSR) which contains three targets: the anteromedial STN for obsessive compulsive disorder (OCD), the medial forebrain bundle (MFB) for depression and OCD, and the "Sano triangle" for pathological aggressiveness. Blocks containing the subthalamic area were obtained from two human brains. After obtaining 11.7-Tesla MRI, blocks were cut in regular sections for immunohistochemistry. Fluorescent in situ hybridisation was performed on the macaque MSR. Electron microscopic observation for synaptic specialisation was performed on human and macaque subthalamic fresh samples. Images of human brain sections were reconstructed in a cryoblock which was registered on the MRI and histological slices were then registered. The STN contains glutamatergic and fewer GABAergic neurons and has no strict boundary with the adjacent MSR. The anteromedial STN has abundant dopaminergic and serotoninergic innervation with very sparse dopaminergic neurons. The MFB is composed of dense anterior dopaminergic and posterior serotoninergic fibres, and fewer cholinergic and glutamatergic fibres. Medially, the Sano triangle presumably contains orexinergic terminals from the hypothalamus, and neurons with strong nuclear oestrogen receptor-alpha staining with a decreased anteroposterior and mediolateral gradient of staining. These findings provide new insight regarding MSR cells and their fibre specialisation, forming a transition zone between the basal ganglia and the limbic systems. Our 3D reconstruction enabled us to visualize the main histological features of the three targets which should enable better targeting and understanding of neuromodulatory stimulation results in severe psychiatric conditions.
(© 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)
References: Arsenault MY, Parent A, Seguela P, Descarries L (1988) Distribution and morphological characteristics of dopamine-immunoreactive neurons in the midbrain of the squirrel monkey (Saimiri sciureus). J Comp Neurol 267:489–506. (PMID: 10.1002/cne.9026704043346372)
Augood J, Hollingsworth ZR, Standaert DG, Emson C, Penney JB (2000) Localization of dopaminergic markers in the human subthalamic nucleus. J Comp Neurol 421(2):247–255. (PMID: 10.1002/(SICI)1096-9861(20000529)421:2<247::AID-CNE9>3.0.CO;2-F10813785)
Barbier M, Risold PY (2021) Understanding the Significance of the Hypothalamic Nature of the Subthalamic Nucleus. eNeuro. 8(5):ENEURO.0116-21.2021.   https://doi.org/10.1523/ENEURO.0116-21.2021.
Barraud Q, Obeid I, Aubert I et al (2010) Neuroanatomical study of the A11 diencephalospinal pathway in the non-human primate. PLoS One. 5(10):e13306. https://doi.org/10.1371/journal.pone.0013306. (PMID: 10.1371/journal.pone.0013306209672552954154)
Buot A, Welter ML, Karachi C et al (2013) Processing of emotional information in the human subthalamic nucleus. J Neurol Neurosurg Psychiatry 84(12):1331–1338. https://doi.org/10.1136/jnnp-2011-302158. (PMID: 10.1136/jnnp-2011-30215823100448)
Buot A, Karachi C, Lau B et al (2021) Emotions Modulate Subthalamic Nucleus Activity: New Evidence in Obsessive-Compulsive Disorder and Parkinson’s Disease Patients. Biol Psychiatry Cogn Neurosci Neuroimag 6(5):556–567.
Carpenter MB (1991) Core text of neuroanatomy. In: Carpenter MB (ed) Williams and Wilkins. USA.
Chabardes S, Krack P, Piallat B et al (2020) Deep brain stimulation of the subthalamic nucleus in obsessive–compulsive disorders: Long-term follow-up of an open, prospective, observational cohort. JNNP 91(12):1349–1356. https://doi.org/10.1136/jnnp-2020-323421. (PMID: 10.1136/jnnp-2020-323421)
Charbit AR, Akerman S, Holland PR, Goadsby PJ (2009) Neurons of the dopaminergic/calcitonin gene-related peptide A11 cell group modulate neuronal firing in the trigeminocervical complex: an electrophysiological and immunohistochemical study. J Neurosci 29(40):12532–12541. https://doi.org/10.1523/JNEUROSCI.2887-09.2009. (PMID: 10.1523/JNEUROSCI.2887-09.2009198123286665099)
Clemens S, Rye D, Hochman S (2006) Restless legs syndrome: revisiting the dopamine hypothesis from the spinal cord perspective. Neurology 67(1):125–130. https://doi.org/10.1212/01.wnl.0000223316.53428.c9. (PMID: 10.1212/01.wnl.0000223316.53428.c916832090)
Coenen VA, Schlaepfer TE, Maedler B, Panksepp J (2011) Cross-species affective functions of the medial forebrain bundle-implications for the treatment of affective pain and depression in humans. Neurosci Biobehav Rev 35(9):1971–1981. (PMID: 10.1016/j.neubiorev.2010.12.00921184778)
Coenen VA, Schlaepfer TE, Goll P et al (2016) The medial forebrain bundle as a target for deep brain stimulation for obsessive-compulsive disorder. CNS Spectr 493:1–8. https://doi.org/10.1017/s1092852916000286. (PMID: 10.1017/s1092852916000286)
Coenen VA, Bewernick BH, Kayser S et al (2019) Superolateral medial forebrain bundle deep brain stimulation in major depression: a gateway trial. Neuropsychopharmacology 44(7):1224–1232. https://doi.org/10.1038/s41386-019-0369-9. (PMID: 10.1038/s41386-019-0369-9308675536785007)
Cragg SJ, Baufreton J, Xue Y, Bolam JP, Bevan MD (2004) Synaptic release of dopamine in the subthalamic nucleus. Eur J Neurosci 20:1788–1802. (PMID: 10.1111/j.1460-9568.2004.03629.x15380000)
Descarries L, Watkins KC, Garcia S, Bosler O, Doucet G (1996) Dual character, asynaptic and synaptic, of the dopamine innervation in adult rat neostriatum: a quantitative autoradiographic and immunocytochemical analysis. J Comp Neurol 375:167–186. (PMID: 10.1002/(SICI)1096-9861(19961111)375:2<167::AID-CNE1>3.0.CO;2-08915824)
Dumas S, Wallén-Mackenzie Å (2019) Developmental Co-expression of Vglut2 and Nurr1 in a Mes-Di-Encephalic Continuum Preceeds Dopamine and Glutamate Neuron Specification. Front Cell Dev Biol 28(7):307. https://doi.org/10.3389/fcell.2019.00307. (PMID: 10.3389/fcell.2019.00307)
Eid L, Parent M (2015) Morphological evidence for dopamine interactions with pallidal neurons in primates. Front Neuroanat 9:111. https://doi.org/10.3389/fnana.2015.00111. (PMID: 10.3389/fnana.2015.00111263219234531254)
Eid L, Parent A, Parent M (2016) Asynaptic feature and heterogeneous distribution of the cholinergic innervation of the globus pallidus in primates. Brain Struct Funct 221:1139–1155. https://doi.org/10.1007/s00429-014-0960-0. (PMID: 10.1007/s00429-014-0960-025523104)
Eitan R, Shamir RR, Linetsky E et al (2013) Asymmetric right/left encoding of emotions in the human subthalamic nucleus. Front Syst Neurosci 7:69. https://doi.org/10.3389/fnsys.2013.00069. (PMID: 10.3389/fnsys.2013.00069241947033810611)
Felten DL, Sladek JR Jr (1983) Monoamine distribution in primate brain V Monoaminergic nuclei: anatomy, pathways and local organization. Brain Res Bull 10(2):171–284. https://doi.org/10.1016/0361-9230(83)90045-x. (PMID: 10.1016/0361-9230(83)90045-x6839182)
Fenoy AJ, Quevedo J, Soares JC (2021) Deep brain stimulation of the “medial forebrain bundle”: a strategy to modulate the reward system and manage treatment-resistant depression. Mol Psychiatry 27(1):574–592. https://doi.org/10.1038/s41380-021-01100-6. (PMID: 10.1038/s41380-021-01100-633903731)
François C, Savy C, Jan C (2000) Dopaminergic innervation of the subthalamic nucleus in the normal state, in MPTP-treated monkeys, and in Parkinson’s disease patients. J Comp Neurol 425(1):121–129. https://doi.org/10.1002/1096-9861(20000911)425:1%3c121::aid-cne10%3e3.0.co;2-g. (PMID: 10.1002/1096-9861(20000911)425:1<121::aid-cne10>3.0.co;2-g10940946)
Fuxe K, Cintra A, Agnati LF, Härfstrand A, Goldstein M (1988) Studies on the relationship of tyrosine hydroxylase, dopamine and cyclic amp-regulated phosphoprotein-32 immunoreactive neuronal structures and d1 receptor antagonist binding sites in various brain regions of the male rat-mismatches indicate a role of d1 receptors in volume transmission. Neurochem Int 13(2):179–197. https://doi.org/10.1016/0197-0186(88)90054-x. (PMID: 10.1016/0197-0186(88)90054-x20501287)
Gippert SM, Switala C, Bewernick BH (2017) Deep brain stimulation for bipolar disorder-review and outlook. CNS Spectr 22(3):254–257. https://doi.org/10.1017/S1092852915000577. (PMID: 10.1017/S109285291500057726863160)
Hammond C, Yelnik J (1983) Intracellular labelling of rat subthalamic neurones with horseradish peroxidase: computer analysis of dendrites and characterization of axon arborization. Neuroscience 8(4):781–790. https://doi.org/10.1016/0306-4522(83)90009-x. (PMID: 10.1016/0306-4522(83)90009-x6866263)
Haber SN, Yendiki A, Jbabdi S (2021) Four deep brain stimulation targets for obsessive-compulsive disorder: are they different? Biol Psychiatry 90(10):667–677. https://doi.org/10.1016/j.biopsych.2020.06.031. (PMID: 10.1016/j.biopsych.2020.06.03132951818)
Hardman CD, Henderson JM, Finkelstein DI (2002) Comparison of the basal ganglia in rats, marmosets, macaques, baboons, and humans: volume and neuronal number for the output, internal relay, and striatal modulating nuclei. J Comp Neurol 445(3):238–255. https://doi.org/10.1002/cne.10165. (PMID: 10.1002/cne.1016511920704)
Haynes WIA (2013) Haber SN (2013) The organization of prefrontal-subthalamic inputs in primates provides an anatomical substrate for both functional specificity and integration: implications for basal ganglia models and deep brain stimulation. J Neurosci 33:4804–4814. https://doi.org/10.1523/jneurosci.4674-12. (PMID: 10.1523/jneurosci.4674-12234869513755746)
Hursh JB (1939) Conduction velocity and diameter of nerve fibres. Am J Physiol 127:131–139. (PMID: 10.1152/ajplegacy.1939.127.1.131)
Johnson PL, Truitt W, Fitz SD et al (2010) A key role for orexin in panic anxiety. Nat Med 16(1):111–115. https://doi.org/10.1038/nm.2075. (PMID: 10.1038/nm.207520037593)
Karachi C, Yelnik J, Tandé D et al (2005) The pallidosubthalamic projection: an anatomical substrate for nonmotor functions of the subthalamic nucleus in primates. Mov Dis 20(2):172–180. https://doi.org/10.1002/mds.20302. (PMID: 10.1002/mds.20302)
Kitahama K, Ikemoto K, Jouvet A (1998) Aromatic L-amino acid decarboxylase- and tyrosine hydroxylase-immunohistochemistry in the adult human hypothalamus. J Chem Neuroanat 16(1):43–55. https://doi.org/10.1016/s0891-0618(98)00060-x. (PMID: 10.1016/s0891-0618(98)00060-x9924972)
Kruijver FP, Balesar R, Espila AM, Unmehopa UA, Swaab DF (2002) Estrogen receptor-alpha distribution in the human hypothalamus in relation to sex and endocrine status. J Comp Neurol 454(2):115–139. https://doi.org/10.1002/cne.10416. (PMID: 10.1002/cne.1041612412138)
Kung L, Force M, Chute DJ, Roberts RC (1998) Immunocytochemical localization of tyrosine hydroxylase in the human striatum: a postmortem ultrastructural study. J Comp Neurol 390:52–62. (PMID: 10.1002/(SICI)1096-9861(19980105)390:1<52::AID-CNE5>3.0.CO;2-P9456175)
Lavoie B, Smith Y, Parent A (1989) Dopaminergic innervation of the basal ganglia in the squirrel monkey as revealed by tyrosine hydroxylase immunohistochemistry. J Comp Neurol 289(1):36–52. https://doi.org/10.1002/cne.902890104. (PMID: 10.1002/cne.9028901042572613)
Lee H, Kim DW, Remedios R et al (2014) Scalable control of mounting and attack by Esr1+ neurons in the ventromedial hypothalamus. Nature 509(7502):627–632. https://doi.org/10.1038/nature13169. (PMID: 10.1038/nature13169247399754098836)
Lévesque JC, Parent A (2005) GABAergic interneurons in human subthalamic nucleus. Mov Disord 20(5):574–84. https://doi.org/10.1002/mds.20374. (PMID: 10.1002/mds.2037415645534)
Mallet L, Schüpbach M, N’Diaye K et al (2007) Stimulation of subterritories of the subthalamic nucleus reveals its role in the integration of the emotional and motor aspects of behavior. Proc Natl Acad Sci U S A 104(25):10661–10666. https://doi.org/10.1073/pnas.0610849104. (PMID: 10.1073/pnas.0610849104175565461965569)
Mallet L, Polosan M, Jaafari N et al (2008) Subthalamic nucleus stimulation in severe obsessive-compulsive disorder. N Engl J Med 359(20):2121–2134. https://doi.org/10.1056/NEJMoa0708514. (PMID: 10.1056/NEJMoa070851419005196)
Micieli R, Rios AL, Aguilar RP et al (2017) Single-unit analysis of the human posterior hypothalamus and red nucleus during deep brain stimulation for aggressivity. J Neurosurg 126(4):1158–1164. https://doi.org/10.3171/2016.4.JNS141704. (PMID: 10.3171/2016.4.JNS14170427341042)
Miguel Telega L, Ashouri Vajari D, Stieglitz T et al (2022) New insights into In vivo dopamine physiology and neurostimulation: a fiber photometry study highlighting the impact of medial forebrain bundle deep brain stimulation on the nucleus accumbens. Brain Sci 12(8):1105. https://doi.org/10.3390/brainsci12081105. (PMID: 10.3390/brainsci12081105360091699406226)
Mori S, Takino T, Yamada H, Sano Y (1985) Immunohistochemical demonstration of serotonin nerve fibers in the subthalamic nucleus of the rat, cat and monkey. Neurosci Lett 62(3):305–309. https://doi.org/10.1016/0304-3940(85)90566-x. (PMID: 10.1016/0304-3940(85)90566-x2419795)
Nauta WJ, Haymaker W (1969) Hypothalamic nuclei and fiber connections. In: Thomas CC (ed) The hypothalamus. Thomas Books, Springfi eld, Illinois, USA, pp 136–200.
Nieuwenhuys R, Voogd J, van Huijzen C (2008) The human central nervous system. Springer, New York. (PMID: 10.1007/978-3-540-34686-9)
Ogawa S, Lubahn DB, Korach KS, Pfaff DW (1996) Behavioral effects of estrogen receptor gene disruption in male mice. Proc Natl Acad Sci USA 94(4):1476–1481. https://doi.org/10.1073/pnas.94.4.1476. (PMID: 10.1073/pnas.94.4.1476)
Oldani L, Benatti B, Macellaro M et al (2021) A case of treatment-resistant bipolar depression and comorbid OCD treated with deep brain stimulation of the medial forebrain bundle: 5 years follow-up results. J Clin Neurosci 89:103–105. https://doi.org/10.1016/j.jocn.2021.04.033. (PMID: 10.1016/j.jocn.2021.04.03334119251)
Osterlund MK, Keller E, Hurd YL (2000) The human forebrain has discrete estrogen receptor alpha messenger RNA expression: high levels in the amygdaloid complex. Neuroscience 95(2):333–342. https://doi.org/10.1016/s0306-4522(99)00443-1. (PMID: 10.1016/s0306-4522(99)00443-110658612)
Ourselin S, Roche A, Prima S, Ayache N (2000) Block Matching: A General Framework to Improve Improve Robustness of Rigid Registration of Medical Images. In: DiGioia A and Delp S (Eds), Third International Conference on Medical Robotics, Imaging And Computer Assisted Surgery (MICCAI 2000), Lectures Notes in Computer Science, pages 557–566, Pittsburgh, Penn, USA. Springer.
Parent M, Wallman MJ, Descarries L, Parent A (2011) Serotonin innervation of basal ganglia in monkeys and humans. J Chem Neuroanat 41(4):256–265. https://doi.org/10.1016/j.jchemneu.2011.04.005. (PMID: 10.1016/j.jchemneu.2011.04.00521664455)
Perez S, Sendera TJ, Kordower JH, Mufson EJ (2004) Estrogen receptor alpha containing neurons in the monkey forebrain: lack of association with calcium binding proteins and choline acetyltransferase. Brain Res 1019(1–2):55–63. https://doi.org/10.1016/j.brainres.2004.05.101. (PMID: 10.1016/j.brainres.2004.05.10115306238)
Pifl C, Bertel O, Schingnitz G, Hornykiewicz O (1990) Extrastriatal dopamine in symptomatic and asymptomatic rhesus monkeys treated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Neurochem Int 17:263–270. (PMID: 10.1016/0197-0186(90)90148-M20504626)
Roberts RC, McKim R, Kung L, Crosby K, Chute DJ (1997) The immunocytochemical localization of tyrosine hydroxylase in the human substantia nigra: A postmortem ultrastructural study. Schizophr Res 24:41. (PMID: 10.1016/S0920-9964(97)82116-0)
Sano K (1962) Sedative neurosurgery. Neurol Med-Chir 4:112–142. https://doi.org/10.2176/nmc.4.112. (PMID: 10.2176/nmc.4.112)
Sano K, Yoshioka M, Ogashiwa M et al (1966) Postero-medial hypothalamotomy in the treatment of aggressive behaviors. Stereot Funct Neurosci 27:164–167. https://doi.org/10.1159/000103949. (PMID: 10.1159/000103949)
Sano K, Mayanagi Y, Sekino H et al (1970) Results of stimulation and destruction of the posterior hypothalamus in man. J Neurosurg 33:689–707. https://doi.org/10.3171/jns.1970,33(6),pp.0689. (PMID: 10.3171/jns.1970,33(6),pp.06895488801)
Schaltenbrand G, Wahren W, Hassler R (2005) Atlas for stereotaxy of the human brain: With an accompanying guide.
Schlaepfer TE, Bewernick BH, Kayser S et al (2013) Rapid effects of deep brain stimulation for treatment-resistant major depression. Biol Psychiatry 73(12):1204–1212. https://doi.org/10.1016/j.biopsych.2013.01.034. (PMID: 10.1016/j.biopsych.2013.01.03423562618)
Sébille SB, Rolland AS, Faillot M et al (2019) Normal and pathological neuronal distribution of the human mesencephalic locomotor region. Mov Disord 34(2):218–227. (PMID: 10.1002/mds.2757830485555)
Somma T, Esposito F, Scala MR et al (2022) Psychiatric symptoms in parkinson’s disease patients before and one year after Subthalamic nucleus deep brain stimulation therapy: role of lead positioning and not of total electrical energy delivered. J Pers Med. 12(10):1643. https://doi.org/10.3390/jpm12101643. (PMID: 10.3390/jpm12101643362947829605574)
Soya S, Sakurai T (2020) Evolution of orexin neuropeptide system: structure and function. Front Neurosci 10(14):691. https://doi.org/10.3389/fnins.2020.00691. (PMID: 10.3389/fnins.2020.00691)
Suzuki M, Beuckmann CT, Shikata K, Ogura H, Sawai T (2005) Orexin-A (hypocretin-1) is possibly involved in generation of anxiety-like behavior. Brain Res 1044(1):116–121. https://doi.org/10.1016/j.brainres.2005.03.002. (PMID: 10.1016/j.brainres.2005.03.00215862796)
Swaab DF (2003) Human Hypothalamus: Basic and Clinical Aspects, Part I. 1st Edition, Print Book.
Temiz G, Sébille SB, Francois C et al (2019) The anatomo-functional organization of the hyperdirect cortical pathway to the subthalamic area using in vivo structural connectivity imaging in humans. Brain Struct Funct 225:1–15. https://doi.org/10.1007/s00429-019-02012-6. (PMID: 10.1007/s00429-019-02012-6)
Torres CV, Sola RG, Pastor J et al (2013) Long-term results of posteromedial hypothalamic deep brain stimulation for patients with resistant aggressiveness. J Neurosurg 119(2):277–287. https://doi.org/10.3171/2013.4.JNS121639. (PMID: 10.3171/2013.4.JNS12163923746102)
Torres CV, Blasco G, García MN et al (2020) Deep brain stimulation for aggressiveness: long-term follow-up and tractography study of the stimulated brain areas. J Neurosurg. 7:1–10.
Wang SS, Shultz JR, Burish MJ, Harrison KH, Hof PR, Towns LC et al (2008) Functional trade-offs in white matter axonal scaling. J Neurosci 28:4047–4056. (PMID: 10.1523/JNEUROSCI.5559-05.2008184009042779774)
Welter ML, Schüpbach M, Czernecki V et al (2014) Optimal target localization for subthalamic stimulation in patients with Parkinson disease. Neurology 82(15):1352–1361. https://doi.org/10.1212/WNL.0000000000000315. (PMID: 10.1212/WNL.0000000000000315246470244001189)
Yan H, Elkaim LM, Venetucci Gouveia F et al (2022) Deep brain stimulation for extreme behaviors associated with autism spectrum disorder converges on a common pathway: a systematic review and connectomic analysis. J Neurosurg 21:1–10. https://doi.org/10.3171/2021.11.JNS21928. (PMID: 10.3171/2021.11.JNS21928)
Yelnik J, Bardinet E, Dormont D et al (2007) A three-dimensional, histological and deformable atlas of the human basal ganglia I. atlas construction based on immunohistochemical and MRI data. NeuroImage 34:618–638. (PMID: 10.1016/j.neuroimage.2006.09.02617110133)
فهرسة مساهمة: Keywords: Deep brain stimulation; Immunohistochemistry; Medial forebrain bundle; Psychiatric disease; Sano triangle; Subthalamic nucleus
المشرفين على المادة: VTD58H1Z2X (Dopamine)
تواريخ الأحداث: Date Created: 20230905 Date Completed: 20230925 Latest Revision: 20230925
رمز التحديث: 20240514
DOI: 10.1007/s00429-023-02691-2
PMID: 37668733
قاعدة البيانات: MEDLINE
الوصف
تدمد:1863-2661
DOI:10.1007/s00429-023-02691-2