دورية أكاديمية

Historical redlining is associated with increasing geographical disparities in bird biodiversity sampling in the United States.

التفاصيل البيبلوغرافية
العنوان: Historical redlining is associated with increasing geographical disparities in bird biodiversity sampling in the United States.
المؤلفون: Ellis-Soto D; Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA. diego.ellissoto@yale.edu., Chapman M; Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA, USA., Locke DH; Baltimore Field Station, Northern Research Station, USDA Forest Service, Baltimore, MD, USA.
المصدر: Nature human behaviour [Nat Hum Behav] 2023 Nov; Vol. 7 (11), pp. 1869-1877. Date of Electronic Publication: 2023 Sep 07.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Springer Nature Publishing Country of Publication: England NLM ID: 101697750 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 2397-3374 (Electronic) Linking ISSN: 23973374 NLM ISO Abbreviation: Nat Hum Behav Subsets: MEDLINE
أسماء مطبوعة: Original Publication: [London] : Springer Nature Publishing, [2017]-
مواضيع طبية MeSH: Residence Characteristics* , Biodiversity*, United States ; Humans ; Animals ; Cities ; Social Class ; Birds
مستخلص: Historic segregation and inequality are critical to understanding modern environmental conditions. Race-based zoning policies, such as redlining in the United States during the 1930s, are associated with racial inequity and adverse multigenerational socioeconomic levels in income and education, and disparate environmental characteristics including tree canopy cover across urban neighbourhoods. Here we quantify the association between redlining and bird biodiversity sampling density and completeness-two critical metrics of biodiversity knowledge-across 195 cities in the United States. We show that historically redlined neighbourhoods remain the most undersampled urban areas for bird biodiversity today, potentially impacting conservation priorities and propagating urban environmental inequities. The disparity in sampling across redlined neighbourhood grades increased by 35.6% over the past 20 years. We identify specific urban areas in need of increased bird biodiversity sampling and discuss possible strategies for reducing uncertainty and increasing equity of sampling of biodiversity in urban areas. Our findings highlight how human behaviour and past social, economic and political conditions not just segregate our built environment but may also leave a lasting mark on the digital information we have about urban biodiversity.
(© 2023. The Author(s), under exclusive licence to Springer Nature Limited.)
References: Pecl, G. T. et al. Biodiversity redistribution under climate change: impacts on ecosystems and human well-being. Science 355, eaai9214 (2017). (PMID: 2836026810.1126/science.aai9214)
Hooper, D. U. et al. A global synthesis reveals biodiversity loss as a major driver of ecosystem change. Nature 486, 105–108 (2012). (PMID: 2267828910.1038/nature11118)
Update of the Zero Draft of the Post-2020 Global Biodiversity Framework (UNEP, 2020).
Díaz-Reviriego, I., Turnhout, E. & Beck, S. Participation and inclusiveness in the Intergovernmental Science–Policy Platform on Biodiversity and Ecosystem Services. Nat. Sustain. 2, 457–464 (2019). (PMID: 10.1038/s41893-019-0290-6)
Jetz, W. et al. Essential biodiversity variables for mapping and monitoring species populations. Nat. Ecol. Evol. 3, 539–551 (2019). (PMID: 3085859410.1038/s41559-019-0826-1)
Amano, T., Lamming, J. D. L. & Sutherland, W. J. Spatial gaps in global biodiversity information and the role of citizen science. Bioscience 66, 393–400 (2016). (PMID: 10.1093/biosci/biw022)
Bird, T. J. et al. Statistical solutions for error and bias in global citizen science datasets. Biol. Conserv. 173, 144–154 (2014). (PMID: 10.1016/j.biocon.2013.07.037)
Callaghan, C. T., Rowley, J. J. L., Cornwell, W. K., Poore, A. G. B. & Major, R. E. Improving big citizen science data: moving beyond haphazard sampling. PLoS Biol. 17, e3000357 (2019). (PMID: 31246950661980510.1371/journal.pbio.3000357)
La Sorte, F. A. & Somveille, M. Survey completeness of a global citizen-science database of bird occurrence. Ecography 43, 34–43 (2020). (PMID: 10.1111/ecog.04632)
Meyer, C., Jetz, W., Guralnick, R. P., Fritz, S. A. & Kreft, H. Range geometry and socio-economics dominate species-level biases in occurrence information. Glob. Ecol. Biogeogr. 25, 1181–1193 (2016). (PMID: 10.1111/geb.12483)
Troudet, J., Grandcolas, P., Blin, A., Vignes-Lebbe, R. & Legendre, F. Taxonomic bias in biodiversity data and societal preferences. Sci. Rep. 7, 9132 (2017). (PMID: 28831097556732810.1038/s41598-017-09084-6)
Raja, N. B. et al. Colonial history and global economics distort our understanding of deep-time biodiversity. Nat. Ecol. Evol. 6, 145–154 (2022). (PMID: 3496999110.1038/s41559-021-01608-8)
Wang, Q., Phillips, N. E., Small, M. L. & Sampson, R. J. Urban mobility and neighborhood isolation in America’s 50 largest cities. Proc. Natl Acad. Sci. USA 115, 7735–7740 (2018). (PMID: 29987019606503610.1073/pnas.1802537115)
Sullivan, B. L. et al. Using open access observational data for conservation action: a case study for birds. Biol. Conserv. 208, 5–14 (2017). (PMID: 10.1016/j.biocon.2016.04.031)
Soteropoulos, D. L., De Bellis, C. R. & Witsell, T. Citizen science contributions to address biodiversity loss and conservation planning in a rapidly developing region. Diversity 13, 255 (2021).
Schuster, R. et al. Optimizing the conservation of migratory species over their full annual cycle. Nat. Commun. 10, 1754 (2019). (PMID: 30988288646526710.1038/s41467-019-09723-8)
Ruiz-Gutierrez, V. et al. A pathway for citizen science data to inform policy: a case study using eBird data for defining low-risk collision areas for wind energy development. J. Appl. Ecol. 58, 1104–1111 (2021). (PMID: 10.1111/1365-2664.13870)
Perkins, D. M. Blind Spots in Citizen Science Data: Implications of Volunteer Bias in eBird Data. MSc thesis, North Carolina State Univ. (2020).
Locke, D. H. et al. Residential housing segregation and urban tree canopy in 37 US Cities. npj Urban Sustain. 1, 15 (2021). (PMID: 10.1038/s42949-021-00022-0)
Browning, M. H. E. M. et al. Curated dataset of accessible and recreational parks inthe U.S.: comparison to greenspace metrics and sociodemographics. Preprint at EcoEvoRxiv https://doi.org/10.32942/osf.io/pydqe (2022). (PMID: 10.32942/osf.io/pydqe)
Athey, S., Ferguson, B., Gentzkow, M. & Schmidt, T. Estimating experienced racial segregation in US cities using large-scale GPS data. Proc. Natl Acad. Sci. USA 118, e2026160118 (2021). (PMID: 34764221860962110.1073/pnas.2026160118)
Aaronson, D., Hartley, D. & Mazumder, B. The effects of the 1930s HOLC ‘Redlining’ maps. Am. Econ. J. Econ. Policy 13, 355–392 (2021). (PMID: 10.1257/pol.20190414)
Appel, I. & Nickerson, J. Pockets of poverty: the long-term effects of redlining. SSRN https://ssrn.com/abstract=2852856 (2016).
Rutan, D. Q. & Glass, M. R. The lingering effects of neighborhood appraisal: evaluating redlining’s legacy in Pittsburgh. Prof. Geogr. 70, 339–349 (2018). (PMID: 10.1080/00330124.2017.1371610)
Gee, G. C. A multilevel analysis of the relationship between institutional and individual racial discrimination and health status. Am. J. Public Health 92, 615–623 (2002). (PMID: 11919062144712710.2105/AJPH.92.4.615)
Massey, D. S. American apartheid: segregation and the making of the underclass. Am. J. Sociol. 96, 329–357 (1990). (PMID: 10.1086/229532)
Nardone, A., Rudolph, K. E., Morello-Frosch, R. & Casey, J. A. Redlines and greenspace: the relationship between historical redlining and 2010 greenspace across the United States. Environ. Health Perspect. 129, 17006 (2021). (PMID: 3350225410.1289/EHP7495)
Hoffman, J. S., Shandas, V. & Pendleton, N. The effects of historical housing policies on resident exposure to intra-urban heat: a study of 108 US urban areas. Climate 8, 12 (2020).
Burghardt, K. T. et al. Current street tree communities reflect race-based housing policy and modern attempts to remedy environmental injustice. Ecology 104, e3881 (2022).
Roman, L. A. et al. Human and biophysical legacies shape contemporary urban forests: a literature synthesis. Urban For. Urban Green. 31, 157–168 (2018). (PMID: 10.1016/j.ufug.2018.03.004)
Bonney, R. Expanding the impact of citizen science. Bioscience 71, 448–451 (2021). (PMID: 10.1093/biosci/biab041)
Schell, C. J. et al. The ecological and evolutionary consequences of systemic racism in urban environments. Science 4497, eaay4497 (2020). (PMID: 10.1126/science.aay4497)
Schmidt, C. & Garroway, C. J. Systemic racism alters wildlife genetic diversity. Proc. Natl Acad. Sci. USA 119, e2102860119 (2022). (PMID: 36256811961812610.1073/pnas.2102860119)
Callaghan, C. T. et al. Quantifying effort needed to estimate species diversity from citizen science data. Ecosphere 13, e3966 (2022). (PMID: 10.1002/ecs2.3966)
Hughes, A. C. et al. Sampling biases shape our view of the natural world. Ecography 44, 1259–1269 (2021). (PMID: 10.1111/ecog.05926)
Harris, N. C. et al. Socio-ecological gap analysis to forecast species range contractions for conservation. Proc. Natl Acad. Sci. USA 120, e2201942119 (2022). (PMID: 3616544210.1073/pnas.2201942119)
Miriti, M. N., Bowser, G., Cid, C. R. & Harris, N. C. Overcoming blind spots to promote environmental justice research. Trends Ecol. Evol. 36, 269–273 (2021). (PMID: 3348317010.1016/j.tree.2020.12.011)
Blake, C., Rhanor, A. & Pajic, C. The demographics of citizen science participation and its implications for data quality and environmental justice. Citiz. Sci. 5, 21 (2020).
Rutter, J. D. et al. Racial, ethnic, and social patterns in the recreation specialization of birdwatchers: an analysis of United States eBird registrants. J. Outdoor Recreat. Tour. 35, 100400 (2021). (PMID: 10.1016/j.jort.2021.100400)
Rosenblatt, C. J. et al. Highly specialized recreationists contribute the most to the citizen science project eBird. Ornithol. Appl. 124, duac008 (2022).
Cooper, C. B. et al. Inclusion in citizen science: the conundrum of rebranding. Science 372, 1386–1388 (2021). (PMID: 10.1126/science.abi6487)
Jordan, R. C., Gray, S. A., Howe, D. V., Brooks, W. R. & Ehrenfeld, J. G. Knowledge gain and behavioral change in citizen-science programs. Conserv. Biol. 25, 1148–1154 (2011). (PMID: 2196729210.1111/j.1523-1739.2011.01745.x)
Brewer, C. Outreach and partnership programs for conservation education where endangered species conservation and research occur. Conserv. Biol. 16, 4–6 (2002). (PMID: 3570197210.1046/j.1523-1739.2002.01613.x)
Remme, R. P. et al. An ecosystem service perspective on urban nature, physical activity, and health. Proc. Natl Acad. Sci. USA 118, e2018472118 (2021). (PMID: 33990458817913410.1073/pnas.2018472118)
Gonzalez, P. A. et al. Community-based participatory research and policy advocacy to reduce diesel exposure in West Oakland, California. Am. J. Public Health 101, S166–S175 (2011). (PMID: 21551381322250710.2105/AJPH.2010.196204)
Dernoga, M. A., Wilson, S., Jiang, C. & Tutman, F. Environmental justice disparities in Maryland’s watershed restoration programs. Environ. Sci. Policy 45, 67–78 (2015). (PMID: 10.1016/j.envsci.2014.08.007)
Tiago, P., Gouveia, M. J., Capinha, C., Santos-Reis, M. & Pereira, H. M. The influence of motivational factors on the frequency of participation in citizen science activities. Nat. Conserv. 18, 61–78 (2017). (PMID: 10.3897/natureconservation.18.13429)
Sustainable Development Goal 11: Sustainable Cities and Communities (United Nations, 2021).
Marshall, K. A. & Gonzalez-Meler, M. A. Can ecosystem services be part of the solution to environmental justice? Ecosyst. Serv. 22, 202–203 (2016). (PMID: 10.1016/j.ecoser.2016.10.008)
Prévot, A.-C., Cheval, H., Raymond, R. & Cosquer, A. Routine experiences of nature in cities can increase personal commitment toward biodiversity conservation. Biol. Conserv. 226, 1–8 (2018). (PMID: 10.1016/j.biocon.2018.07.008)
Pollock, N. B. et al. Personal BioBlitz: a new way to encourage biodiversity discovery and knowledge in K–99 education and outreach. Bioscience 65, 1154–1164 (2015). (PMID: 10.1093/biosci/biv140)
Nelson, R. K., Winling, L., Marciano, R. & Connolly, N. Mapping Inequality: Redlining in New Deal America (American Panorama, 2018).
Pebesma, E. Simple features for R: standardized support for spatial vector data. R J. https://doi.org/10.32614/rj-2018-009 (2018).
R Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2021).
Walker, K. Tigris: an R package to access and work with geographic data from the US Census Bureau. R J. https://doi.org/10.32614/rj-2016-043 (2016).
Goodchild, M. F., Anselin, L. & Deichmann, U. A framework for the areal interpolation of socioeconomic data. Environ. Plan. A 25, 383–397 (1993). (PMID: 10.1068/a250383)
Sullivan, B. et al. eBird: a citizen-based observation network in the biological sciences. Biol. Conserv. 142, 2282–2292 (2009). (PMID: 10.1016/j.biocon.2009.05.006)
Chamberlain, S. Package ‘rgbif’: interface to the Global ‘Biodiversity’ Information Facility API (CRAN, 2019).
La Sorte, F. A., Aronson, M. F. J., Lepczyk, C. A. & Horton, K. G. Area is the primary correlate of annual and seasonal patterns of avian species richness in urban green spaces. Landsc. Urban Plan. 203, 103892 (2020). (PMID: 10.1016/j.landurbplan.2020.103892)
Callaghan, C. T. et al. Using citizen science data to define and track restoration targets in urban areas. J. Appl. Ecol. 56, 1998–2006 (2019). (PMID: 10.1111/1365-2664.13421)
Lobo, J. M. et al. KnowBR: an application to map the geographical variation of survey effort and identify well-surveyed areas from biodiversity databases. Ecol. Indic. 91, 241–248 (2018). (PMID: 10.1016/j.ecolind.2018.03.077)
Protected Areas Database of the United States (PAD-US) version 2.1 (USGS, 2020).
La Sorte, F. A. et al. Documenting stewardship responsibilities across the annual cycle for birds on U.S. public lands. Ecol. Appl. 25, 39–51 (2015). (PMID: 2625535610.1890/14-0702.1)
Karger, D. N. et al. Climatologies at high resolution for the earth’s land surface areas. Sci. Data 4, 170122 (2017). (PMID: 28872642558439610.1038/sdata.2017.122)
Bates, D., Mächler, M., Bolker & Walter, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015). (PMID: 10.18637/jss.v067.i01)
Aguinis, H., Gottfredson, R. K. & Joo, H. Best-practice recommendations for defining, identifying, and handling outliers. Organ. Res. Methods 16, 270–301 (2013). (PMID: 10.1177/1094428112470848)
تواريخ الأحداث: Date Created: 20230907 Date Completed: 20231123 Latest Revision: 20231123
رمز التحديث: 20240628
DOI: 10.1038/s41562-023-01688-5
PMID: 37679441
قاعدة البيانات: MEDLINE
الوصف
تدمد:2397-3374
DOI:10.1038/s41562-023-01688-5