دورية أكاديمية

Combining SILCS and Artificial Intelligence for High-Throughput Prediction of the Passive Permeability of Drug Molecules.

التفاصيل البيبلوغرافية
العنوان: Combining SILCS and Artificial Intelligence for High-Throughput Prediction of the Passive Permeability of Drug Molecules.
المؤلفون: Pandey P; Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn St., HSF II-633, Baltimore, Maryland 21201, United States., MacKerell AD Jr; Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn St., HSF II-633, Baltimore, Maryland 21201, United States.
المصدر: Journal of chemical information and modeling [J Chem Inf Model] 2023 Sep 25; Vol. 63 (18), pp. 5903-5915. Date of Electronic Publication: 2023 Sep 08.
نوع المنشور: Journal Article; Research Support, N.I.H., Extramural
اللغة: English
بيانات الدورية: Publisher: American Chemical Society Country of Publication: United States NLM ID: 101230060 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1549-960X (Electronic) Linking ISSN: 15499596 NLM ISO Abbreviation: J Chem Inf Model Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Washington, D.C. : American Chemical Society, c2005-
مواضيع طبية MeSH: Artificial Intelligence* , Chemistry, Pharmaceutical*, Ligands ; Permeability ; Cell Membrane Permeability
مستخلص: Membrane permeability of drug molecules plays a significant role in the development of new therapeutic agents. Accordingly, methods to predict the passive permeability of drug candidates during a medicinal chemistry campaign offer the potential to accelerate the drug design process. In this work, we combine the physics-based site identification by ligand competitive saturation (SILCS) method and data-driven artificial intelligence (AI) to create a high-throughput predictive model for the passive permeability of druglike molecules. In this study, we present a comparative analysis of four regression models to predict membrane permeabilities of small druglike molecules; of the tested models, Random Forest was the most predictive yielding an R 2 of 0.81 for the independent data set. The input feature vector used to train the developed prediction model includes absolute free energy profiles of ligands through a POPC-cholesterol bilayer based on ligand grid free energy (LGFE) profiles obtained from the SILCS approach. The use of the membrane free energy profiles from SILCS offers information on the physical forces contributing to ligand permeability, while the use of AI yields a more predictive model trained on experimental PAMPA permeability data for a collection of 229 molecules. This combination allows for rapid estimations of ligand permeability at a level of accuracy beyond currently available predictive models while offering insights into the contributions of the functional groups in the ligands to the permeability barrier, thereby offering quantitative information to facilitate rational ligand design.
References: Toxicol Appl Pharmacol. 2015 Apr 15;284(2):273-80. (PMID: 25560673)
J Chem Inf Model. 2019 Jul 22;59(7):3094-3099. (PMID: 31259547)
Eur J Med Chem. 2003 Mar;38(3):223-32. (PMID: 12667689)
Biochim Biophys Acta. 2016 Oct;1858(10):2254-2265. (PMID: 27085977)
Nat Commun. 2019 Dec 9;10(1):5616. (PMID: 31819053)
J Chem Theory Comput. 2014 Feb 11;10(2):554-64. (PMID: 26580032)
Nat Protoc. 2007;2(9):2111-9. (PMID: 17853866)
J Chem Theory Comput. 2021 May 11;17(5):3188-3202. (PMID: 33929848)
J Chem Inf Model. 2012 Jun 25;52(6):1621-36. (PMID: 22621168)
J Med Chem. 2023 Jun 8;66(11):7253-7267. (PMID: 37217193)
J Chem Inf Model. 2022 Oct 10;62(19):4605-4619. (PMID: 36178379)
J Phys Chem B. 2013 Sep 5;117(35):10183-92. (PMID: 23924441)
Biochim Biophys Acta. 2016 Jul;1858(7 Pt B):1672-87. (PMID: 26706099)
Mol Pharm. 2014 Jun 2;11(6):1727-38. (PMID: 24724562)
J Phys Chem B. 2017 May 25;121(20):5228-5237. (PMID: 28453293)
J Chem Theory Comput. 2013 Dec 10;9(12):5236-46. (PMID: 26592263)
J Chem Theory Comput. 2008 Mar;4(3):435-47. (PMID: 26620784)
Phys Chem Chem Phys. 2020 Apr 6;22(13):6848-6860. (PMID: 32195493)
Bioorg Med Chem. 2007 Jun 1;15(11):3756-67. (PMID: 17418579)
Chem Sci. 2021 May 25;12(25):8844-8858. (PMID: 34257885)
Soft Matter. 2018 Oct 31;14(42):8496-8508. (PMID: 30346462)
Curr Top Med Chem. 2018;18(26):2209-2229. (PMID: 30499410)
AAPS J. 2006 Jan 13;8(1):E1-13. (PMID: 16584115)
J Pharm Sci. 2008 Feb;97(2):712-25. (PMID: 17542022)
J Comput Chem. 2010 Mar;31(4):671-90. (PMID: 19575467)
Bioinformatics. 2021 May 23;37(8):1135-1139. (PMID: 33112379)
AAPS J. 2018 Mar 21;20(3):54. (PMID: 29564576)
Nature. 1972 Mar 24;236(5343):173-4. (PMID: 4553696)
Nat Rev Drug Discov. 2010 Aug;9(8):597-614. (PMID: 20671764)
J Phys Chem B. 2009 Sep 3;113(35):12019-29. (PMID: 19663489)
J Chem Inf Model. 2019 Jul 22;59(7):3198-3213. (PMID: 31259555)
Eur J Pharm Biopharm. 2015 Aug;94:152-9. (PMID: 26004819)
Chem Phys Lipids. 2015 Nov;192:60-74. (PMID: 26238099)
J Chem Theory Comput. 2021 Mar 9;17(3):1562-1580. (PMID: 33620214)
J Chem Inf Model. 2022 Jul 11;62(13):3180-3190. (PMID: 35738004)
J Chem Inf Model. 2022 Apr 25;62(8):1891-1904. (PMID: 35421313)
J Am Chem Soc. 2017 Jan 11;139(1):442-452. (PMID: 27951634)
Drug Discov Today. 2012 Aug;17(15-16):905-12. (PMID: 22507594)
J Phys Chem B. 2018 Jul 5;122(26):6744-6754. (PMID: 29870257)
ChemMedChem. 2018 Oct 22;13(20):2189-2201. (PMID: 30110511)
Biophys J. 2010 Feb 17;98(4):586-95. (PMID: 20159155)
Mar Drugs. 2019 Jan 29;17(2):. (PMID: 30699889)
J Chem Theory Comput. 2013 Aug 13;9(8):3686-703. (PMID: 26584121)
J Chem Inf Model. 2019 Mar 25;59(3):1147-1162. (PMID: 30540459)
Bioorg Med Chem. 2022 Feb 15;56:116588. (PMID: 35030421)
J Chem Theory Comput. 2014 Jun 10;10(6):2281-2290. (PMID: 24932136)
J Comput Chem. 2008 Aug;29(11):1859-65. (PMID: 18351591)
J Pharm Biomed Anal. 2017 Oct 25;145:98-109. (PMID: 28654782)
J Chem Inf Model. 2013 Dec 23;53(12):3384-98. (PMID: 24245913)
J Am Chem Soc. 2019 Aug 28;141(34):13421-13433. (PMID: 31382734)
Chem Biol Drug Des. 2013 Jan;81(1):61-71. (PMID: 23066853)
Methods Enzymol. 1974;32:513-39. (PMID: 4614005)
Sci Rep. 2021 Mar 26;11(1):6991. (PMID: 33772099)
PLoS Comput Biol. 2017 Jul 26;13(7):e1005659. (PMID: 28746339)
Biophys J. 2008 Sep;95(5):2356-67. (PMID: 18502796)
J Chem Inf Model. 2019 Jun 24;59(6):3018-3035. (PMID: 31034213)
J Chem Theory Comput. 2019 May 14;15(5):2913-2924. (PMID: 30998342)
J Pharm Sci. 2013 Jun;102(6):2005-2032. (PMID: 23605505)
J Phys Chem Lett. 2016 Sep 1;7(17):3446-51. (PMID: 27518381)
J Phys Chem B. 2012 Jul 26;116(29):8714-21. (PMID: 22540377)
Pharm Res. 1997 Dec;14(12):1655-8. (PMID: 9453050)
J Control Release. 2014 Jan 10;173:102-9. (PMID: 24211703)
J Chem Phys. 2016 Jun 28;144(24):245103. (PMID: 27369545)
J Phys Chem B. 2010 Jun 17;114(23):7830-43. (PMID: 20496934)
J Med Chem. 1998 Mar 26;41(7):1007-10. (PMID: 9544199)
Methods Enzymol. 1999;294:661-74. (PMID: 9916254)
Biophys J. 1998 Dec;75(6):2658-71. (PMID: 9826590)
Eur J Pharm Sci. 2004 Mar;21(4):429-41. (PMID: 14998573)
J Chem Phys. 2020 Sep 28;153(12):124107. (PMID: 33003739)
J Chem Inf Model. 2012 Jun 25;52(6):1686-97. (PMID: 22612593)
Mol Pharm. 2021 Jun 7;18(6):2122-2141. (PMID: 33914545)
J Comput Chem. 2014 Oct 15;35(27):1997-2004. (PMID: 25130509)
J Chem Inf Model. 2012 Dec 21;52(12):3155-68. (PMID: 23145473)
Eur J Pharm Sci. 2005 Mar;24(4):333-49. (PMID: 15734300)
Biophys J. 2014 Aug 5;107(3):630-641. (PMID: 25099802)
J Phys Chem B. 2011 Apr 7;115(13):3681-8. (PMID: 21405137)
معلومات مُعتمدة: R35 GM131710 United States GM NIGMS NIH HHS
المشرفين على المادة: 0 (Ligands)
تواريخ الأحداث: Date Created: 20230908 Date Completed: 20230926 Latest Revision: 20231029
رمز التحديث: 20240628
مُعرف محوري في PubMed: PMC10603762
DOI: 10.1021/acs.jcim.3c00514
PMID: 37682640
قاعدة البيانات: MEDLINE
الوصف
تدمد:1549-960X
DOI:10.1021/acs.jcim.3c00514