دورية أكاديمية

Microstructural and Nanoindentation Investigation on the Laser Powder Bed Fusion Stainless Steel 316L.

التفاصيل البيبلوغرافية
العنوان: Microstructural and Nanoindentation Investigation on the Laser Powder Bed Fusion Stainless Steel 316L.
المؤلفون: Kurdi A; The Center of Excellence for Advanced Materials and Manufacturing, King Abdulaziz City for Science and Technology, P.O. Box 6086, Riyadh 11442, Saudi Arabia.; Advanced Manufacturing Technology Institute, King Abdulaziz City for Science and Technology, P.O. Box 6086, Riyadh 11442, Saudi Arabia.; Advanced Materials Technology Institute, King Abdulaziz City for Science and Technology, P.O. Box 6086, Riyadh 11442, Saudi Arabia., Tabbakh T; Microelectronics and Semiconductors Institute, King Abdulaziz City for Science and Technology, P.O. Box 6086, Riyadh 11442, Saudi Arabia., Basak AK; Adelaide Microscopy, The University of Adelaide, Adelaide, SA 5005, Australia.
المصدر: Materials (Basel, Switzerland) [Materials (Basel)] 2023 Aug 30; Vol. 16 (17). Date of Electronic Publication: 2023 Aug 30.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: MDPI Country of Publication: Switzerland NLM ID: 101555929 Publication Model: Electronic Cited Medium: Print ISSN: 1996-1944 (Print) Linking ISSN: 19961944 NLM ISO Abbreviation: Materials (Basel) Subsets: PubMed not MEDLINE
أسماء مطبوعة: Publication: May 2010- : Basel, Switzerland : MDPI
Original Publication: Basel, Switzerland : Molecular Diversity Preservation International, 2008-2010.
مستخلص: Additive manufacturing (AM) of stainless steel is more difficult than other metallic materials, as the major alloying elements of the stainless steel are prone to oxidation during the fabrication process. In the current work, specimens of the stainless steel 316L were made by the powder laser bed fusion (P-LBF) additive manufacturing process. These specimens were investigated by electron microscopy and micro-/nano-indentation techniques to investigate the microstructural aspects and the mechanical properties, respectively. Compositionally, a similar wrought stainless steel was subjected to identical investigation, and used as a benchmark material. The microstructure of the P-LBF-processed alloy shows both equiaxed and elongated grains, which are marginally smaller (3.2-3.4 μm) than that of the wrought counterpart (3.6 μm). Withstanding such marginal gain size refinement, the increase in shear stress and hardness of the L-PBF alloy was striking. The L-PBF-processed alloy possess about 1.92-2.12 GPa of hardness, which was about 1.5 times higher than that of wrought alloy (1.30 GPa), and about 1.15 times more resistant against plastic flow of material. Similarly, L-PBF-processed alloy possess higher maximum shear stress (274.5-294.4 MPa) than that of the wrought alloy (175.9 MPa).
References: Materials (Basel). 2018 Nov 16;11(11):. (PMID: 30453542)
J Biomech. 2006;39(14):2699-702. (PMID: 16253265)
Materials (Basel). 2021 Oct 04;14(19):. (PMID: 34640206)
Materials (Basel). 2023 Mar 16;16(6):. (PMID: 36984263)
Materials (Basel). 2020 Oct 14;13(20):. (PMID: 33066589)
فهرسة مساهمة: Keywords: additive manufacturing; hardness; laser powder bed fusion; microstructure; stainless steel 316L
تواريخ الأحداث: Date Created: 20230909 Latest Revision: 20230911
رمز التحديث: 20230911
مُعرف محوري في PubMed: PMC10488893
DOI: 10.3390/ma16175933
PMID: 37687627
قاعدة البيانات: MEDLINE
الوصف
تدمد:1996-1944
DOI:10.3390/ma16175933