دورية أكاديمية

Cyclic variable temperature conditioning induces the rapid sweetening of sweet potato tuberous roots by regulating the sucrose metabolism.

التفاصيل البيبلوغرافية
العنوان: Cyclic variable temperature conditioning induces the rapid sweetening of sweet potato tuberous roots by regulating the sucrose metabolism.
المؤلفون: Yuan J; College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, China; Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control (Huazhong Agricultural University), Wuhan, Hubei 430070, China., Zhang J; College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, China; Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control (Huazhong Agricultural University), Wuhan, Hubei 430070, China., Hu W; College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, China; Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control (Huazhong Agricultural University), Wuhan, Hubei 430070, China. Electronic address: wanfenghu@mail.hzau.edu.cn., Liu X; Shijiazhuang Huigu Agricultural Science and Technology Co., Ltd, China., Murtaza A; College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, China; Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control (Huazhong Agricultural University), Wuhan, Hubei 430070, China., Iqbal A; College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, China; Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control (Huazhong Agricultural University), Wuhan, Hubei 430070, China., Hu X; Shanghai Airipening Agricultural Science and Technology Co., Ltd, China., Wang L; College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, China; Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control (Huazhong Agricultural University), Wuhan, Hubei 430070, China., Xu X; College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, China; Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control (Huazhong Agricultural University), Wuhan, Hubei 430070, China., Pan S; College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, China; Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control (Huazhong Agricultural University), Wuhan, Hubei 430070, China.
المصدر: Food chemistry [Food Chem] 2024 Feb 01; Vol. 433, pp. 137364. Date of Electronic Publication: 2023 Sep 03.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Elsevier Applied Science Publishers Country of Publication: England NLM ID: 7702639 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1873-7072 (Electronic) Linking ISSN: 03088146 NLM ISO Abbreviation: Food Chem Subsets: MEDLINE
أسماء مطبوعة: Publication: Barking : Elsevier Applied Science Publishers
Original Publication: Barking, Eng., Applied Science Publishers.
مواضيع طبية MeSH: Ipomoea batatas*/metabolism , beta-Amylase*/metabolism, Temperature ; Carbohydrate Metabolism ; Sucrose/metabolism ; Starch/metabolism
مستخلص: This study aimed to investigate the influence of cyclic variable temperature conditioning (CVTC) on the rapid sweetening of sweet potato tuberous roots, as assessed through the analysis of sugar metabolism-related compounds and enzyme activities of tubers during storage. The results showed that CVTC effectively preserved the quality of sweet potato tuberous roots, leading to a significant elevation in soluble solids and soluble sugars. The CVTC group displayed sucrose and fructose levels that were 1.72 and 1.46 times higher, respectively, compared to the control group at the 8 d. Additionally, after storage, the activities of β-amylase, sucrose phosphate synthase (SPS), and sucrose synthase (SS) in the CVTC group were increased by 19.85 %, 60.74 %, and 82.48 %, respectively. Conversely, acid convertase (AI) activity showed inhibition of 64.72 %. In conclusion, implementing CVTC enhanced enzymatic activity in β-amylase, SPS, and SS, facilitating starch degradation and sucrose synthesis, which contributed to the overall improvement in the sweetness of sweet potato tubers.
Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
(Copyright © 2023 Elsevier Ltd. All rights reserved.)
فهرسة مساهمة: Keywords: Cyclic variable temperature conditioning; Sucrose metabolism; Sweet potato tuberous roots; Sweeten
المشرفين على المادة: EC 3.2.1.2 (beta-Amylase)
57-50-1 (Sucrose)
9005-25-8 (Starch)
تواريخ الأحداث: Date Created: 20230909 Date Completed: 20231012 Latest Revision: 20231012
رمز التحديث: 20240628
DOI: 10.1016/j.foodchem.2023.137364
PMID: 37688819
قاعدة البيانات: MEDLINE
الوصف
تدمد:1873-7072
DOI:10.1016/j.foodchem.2023.137364