دورية أكاديمية

Environmental variables drive spatial patterns of trophic diversity in mammals.

التفاصيل البيبلوغرافية
العنوان: Environmental variables drive spatial patterns of trophic diversity in mammals.
المؤلفون: Adkins J; The Department of Watershed Sciences and The Ecology Center, Utah State University, Logan, Utah, USA., Hammill E; The Department of Watershed Sciences and The Ecology Center, Utah State University, Logan, Utah, USA., Abdulwahab UA; The Department of Watershed Sciences and The Ecology Center, Utah State University, Logan, Utah, USA., Draper JP; The Department of Watershed Sciences and The Ecology Center, Utah State University, Logan, Utah, USA., Wolf JM; The Department of Watershed Sciences and The Ecology Center, Utah State University, Logan, Utah, USA., McClure CM; The Department of Watershed Sciences and The Ecology Center, Utah State University, Logan, Utah, USA., González Ortiz AA; The Department of Watershed Sciences and The Ecology Center, Utah State University, Logan, Utah, USA., Chavez EA; The Department of Watershed Sciences and The Ecology Center, Utah State University, Logan, Utah, USA., Atwood TB; The Department of Watershed Sciences and The Ecology Center, Utah State University, Logan, Utah, USA.
المصدر: Ecology letters [Ecol Lett] 2023 Nov; Vol. 26 (11), pp. 1940-1950. Date of Electronic Publication: 2023 Sep 11.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Blackwell Publishing Country of Publication: England NLM ID: 101121949 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1461-0248 (Electronic) Linking ISSN: 1461023X NLM ISO Abbreviation: Ecol Lett Subsets: MEDLINE
أسماء مطبوعة: Publication: Oxford, UK : Blackwell Publishing
Original Publication: Oxford, UK : [Paris, France] : Blackwell Science ; Centre national de la recherche scientifique, c1998-
مواضيع طبية MeSH: Biodiversity* , Mammals*, Animals ; Herbivory
مستخلص: Understanding environmental drivers of species diversity has become increasingly important under climate change. Different trophic groups (predators, omnivores and herbivores) interact with their environments in fundamentally different ways and may therefore be influenced by different environmental drivers. Using random forest models, we identified drivers of terrestrial mammals' total and proportional species richness within trophic groups at a global scale. Precipitation seasonality was the most important predictor of richness for all trophic groups. Richness peaked at intermediate precipitation seasonality, indicating that moderate levels of environmental heterogeneity promote mammal richness. Gross primary production (GPP) was the most important correlate of the relative contribution of each trophic group to total species richness. The strong relationship with GPP demonstrates that basal-level resource availability influences how diversity is structured among trophic groups. Our findings suggest that environmental characteristics that influence resource temporal variability and abundance are important predictors of terrestrial mammal richness at a global scale.
(© 2023 John Wiley & Sons Ltd.)
References: Adler, P.B. & Drake, J.M. (2008) Environmental variation, stochastic extinction, and competitive coexistence. The American Naturalist, 172, E186-E195.
Asher, S.C. & Thomas, V.G. (1984) Analysis of temporal variation in the diversity of a small mammal community. Canadian Journal of Zoology, 63, 1106-1109.
Atwood, T.B., Valentine, S.A., Hammill, E., McCauley, D.J., Madin, E.M.P., Beard, K.H. et al. (2020) Herbivores at the highest risk of extinction among mammals, birds, and reptiles. Science Advances, 6, eabb8458.
Boersma, M., Mathew, K.A., Niehoff, B., Schoo, K.L., Franco-Santos, R.M. & Meunier, C.L. (2016) Temperature driven changes in the diet preference of omnivorous copepods: no more meat when it's hot? Ecology Letters, 19, 45-53.
Breiman, L. (2001) Random forests. Machine Learning, 45, 5-32.
Breinl, K., Di Baldassarre, G., Mazzoleni, M., Lun, D. & Vico, G. (2020) Extreme dry and wet spells face changes in their duration and timing. Environmental Research Letters, 15, 074040.
Castagneyrol, B. & Jactel, H. (2012) Unraveling plant-animal diversity relationships: a meta-regression analysis. Ecology, 93, 2115-2124.
Chesson, P. (2000) Mechanisms of maintenance of species diversity. Annual Review of Ecology and Systematics, 31, 343-358.
Chesson, P. & Huntly, N. (1997) The roles of harsh and fluctuating conditions in the dynamics of ecological communities. The American Naturalist, 150, 519-553.
Chevalier, M., Mod, H., Broennimann, O., Di Cola, V., Schmid, S., Niculita-Hirzel, H. et al. (2021) Low spatial autocorrelation in mountain biodiversity data and model residuals. Ecosphere, 12, e03403.
Chubaty, A.M., Ma, B.O., Stein, R.W., Gillespie, D.R., Henry, L.M., Phelan, C. et al. (2014) On the evolution of omnivory in a community context. Ecology and Evolution, 4, 251-265.
Connell, J.H. (1978) Diversity in tropical rain forests and coral reefs. Science, 199, 1302-1310.
Cutler, D.R., Edwards, T.C., Beard, K.H., Cutler, A., Hess, K.T., Gibson, J. et al. (2007) Random forests for classification in ecology. Ecology, 88, 2783-2792.
Dalby, L., McGill, B.J., Fox, A.D. & Svenning, J.-C. (2014) Seasonality drives global-scale diversity patterns in waterfowl (Anseriformes) via temporal niche exploitation. Global Ecology and Biogeography, 23, 550-562.
Diehl, S. (2003) The evolution and maintenance of omnivory. Ecology, 84, 2557-2567.
Diffenbaugh, N.S., Singh, D., Mankin, J.S., Horton, D.E., Swain, D.L., Touma, D. et al. (2017) Quantifying the influence of global warming on unprecedented extreme climate events. Proceedings of the National Academy of Sciences of the United States of America, 114, 4881-4886.
Evans, K.L., Greenwood, J.J.D. & Gaston, K.J. (2005) Dissecting the species-energy relationship. Dissecting the Species-Energy Relationship, 272, 2155-2163.
Evans, K.L., Warren, P.H. & Gaston, K.J. (2005) Species-energy relationships at the macroecological scale: a review of the mechanisms. Biological Reviews of the Cambridge Philosophical Society, 80, 1-25.
Fick, S.E. & Hijmans, R.J. (2017) WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37, 4302-4315.
Gainsbury, A.M., Tallowin, O.J.S. & Meiri, S. (2018) An updated global data set for diet preferences in terrestrial mammals: testing the validity of extrapolation. Mammal Review, 48, 160-167.
Graham, C.H., Carnaval, A.C., Cadena, C.D., Zamudio, K.R., Roberts, T.E., Parra, J.L. et al. (2014) The origin and maintenance of montane diversity: integrating evolutionary and ecological processes. Ecography, 37, 711-719.
Haddad, N.M., Crutsinger, G.M., Gross, K., Haarstad, J., Knops, J.M.H. & Tilman, D. (2009) Plant species loss decreases arthropod diversity and shifts trophic structure. Ecology Letters, 12, 1029-1039.
Hawkins, B.A. (2001) Ecology's oldest pattern? Trends in Ecology & Evolution, 16, 470.
Hawkins, B.A., Field, R., Cornell, H.V., Currie, D.J., Guegan, J.-F., Kaufman, D.M. et al. (2003) Energy, water, and broad-scale geographic patterns of species richness. Ecology, 84, 3105-3117.
Hurlbert, A.H. & Jetz, W. (2007) Species richness, hotspots, and the scale dependence of range maps in ecology and conservation. Proceedings of the National Academy of Sciences of the United States of America, 104, 13384-13389.
Hutchinson, G.E. (1961) The paradox of the plankton. The American Naturalist, 95, 137-145.
IUCN. (2019) The IUCN Red List of Threatened Species. Version 2019-2. https://www.iucnredlist.org. Accessed on [2019].
IUCN. (2021) The IUCN Red List of Threatened Species. Version 2021-1. https://www.iucnredlist.org. Accessed on [May 2021].
Jenkins, C.N., Pimm, S.L. & Joppa, L.N. (2013) Global patterns of terrestrial vertebrate diversity and conservation. Proceedings of the National Academy of Sciences of the United States of America, 110, E2603-E2610.
Jetz, W., Kreft, H., Ceballos, G. & Mutke, J. (2009) Global associations between terrestrial producer and vertebrate consumer diversity. Proceedings of the Royal Society B: Biological Sciences, 276, 269-278.
Klopfer, P.H. (1959) Environmental determinants of faunal diversity. The American Naturalist, 93, 337-342.
Kondoh, M. (2008) Building trophic modules into a persistent food web. Proceedings of the National Academy of Sciences of the United States of America, 105, 16631-16635.
Liaw, A. & Wiener, M. (2002) Classification and regression by randomForest. R News, 2, 18-22.
Liu, M., Rubenstein, D.R., Cheong, S.A. & Shen, S.F. (2021) Antagonistic effects of long- and short-term environmental variation on species coexistence. Proceedings of the Royal Society B: Biological Sciences, 288, 20211491.
Luo, Z., Tang, S., Li, C., Fang, H., Hu, H., Yang, J. et al. (2012) Environmental effects on vertebrate species richness: testing the energy, environmental stability and habitat heterogeneity hypotheses. PLoS One, 7, e35514.
McMeans, B.C., Kadoya, T., Pool, T.K., Holtgrieve, G.W., Lek, S., Kong, H. et al. (2019) Consumer trophic positions respond variably to seasonally fluctuating environments. Ecology, 100, 1-10.
Mittelbach, G.G., Schemske, D.W., Cornell, H.V., Allen, A.P., Brown, J.M., Bush, M.B. et al. (2007) Evolution and the latitudinal diversity gradient: speciation, extinction and biogeography. Ecology Letters, 10, 315-331.
O'Donnell, M.S. & Ignizio, D.A. (2012) Bioclimatic predictors for supporting ecological applications in the conterminous United States. U.S Geol. Surv. Data Ser., 691.
Pacifici, M., Rondinini, C., Rhodes, J.R., Burbidge, A.A., Cristiano, A., Watson, J.E.M. et al. (2020) Global correlates of range contractions and expansions in terrestrial mammals. Nature Communications, 11, 1-9.
Parmesan, C., Morecroft, M.D., Trisurat, Y., Adrian, R., Anshari, G.Z., Arneth, A., et al. (2022). Terrestrial and freshwater ecosystems and their services. In: Climate change 2022: impacts, adaptations, and vulnerability. Contribution of working group II to the sixth assessment report of the intergovernmental panel on climate change (eds. Pörtner, H.-O., Roberts, D.C., Tignor, M., Poloczanska, E.S., Mintenbeck, K., Algría, A., et al.). Cambridge University Press, Cambridge, UK and New York, NY, USA, pp. 197-377.
Pascale, S., Lucarini, V., Feng, X., Porporato, A. & Ul Hasson, S. (2016) Projected changes of rainfall seasonality and dry spells in a high greenhouse gas emissions scenario. Climate Dynamics, 46, 1331-1350.
Pautasso, M. & Gaston, K.J. (2005) Resources and global avian assemblage structure in forests. Ecology Letters, 8, 282-289.
Price, S.A., Hopkins, S.S.B., Smith, K.K. & Roth, V.L. (2012) Tempo of trophic evolution and its impact on mammalian diversification. Proceedings of the National Academy of Sciences of the United States of America, 109, 7008-7012.
R Core Team. (2022) A language and environment for statistical computing. R Found. Stat. Comput.
Richardson, J.E. & Pennington, R.T. (2016) Editorial: origin of tropical diversity: from clades to communities. Frontiers in Genetics, 7, 1-3.
Scherber, C., Eisenhauer, N., Weisser, W.W., Schmid, B., Voigt, W., Fischer, M. et al. (2010) Bottom-up effects of plant diversity on multitrophic interactions in a biodiversity experiment. Nature, 468, 553-556.
Siqueira, A.C., Muruga, P. & Bellwood, D.R. (2023) On the evolution of fish-coral interactions. Ecology Letters, 26, 1348-1358.
Stein, A., Gerstner, K. & Kreft, H. (2014) Environmental heterogeneity as a universal driver of species richness across taxa, biomes and spatial scales. Ecology Letters, 17, 866-880.
Tilman, D., Wedin, D. & Knops, J. (1996) Productivity and sustainability influenced by biodiversity in grassland ecosystems. Nature, 379, 718-720.
Tonkin, J.D., Bogan, M.T., Bonada, N., Rios-Touma, B. & Lytle, D.A. (2017) Seasonality and predictability shape temporal species diversity. Ecology, 98, 1201-1216.
Walsh, R.P.D. & Lawler, D.M. (1981) Rainfall seasonality: description, spatial patterns, and change through time. Weather, 36, 201-208.
White, E.P., Morgan Ernest, S.K., Adler, P.B., Hurlbert, A.H. & Kathleen Lyons, S. (2010) Integrating spatial and temporal approaches to understanding species richness. Philosophical Transactions of the Royal Society B, 365, 3633-3643.
Wiens, J.J. (2023) Trait-based species richness: ecology and macroevolution. Biological Reviews, 1381, 1365-1387.
Willig, M.R., Kaufman, D.M. & Stevens, R.D. (2003) Latitudinal gradients of biodiversity: pattern, process, scale, and synthesis. Annual Review of Ecology, Evolution, and Systematics, 34, 273-309.
Wilman, H., Belmaker, J., Jennifer, S., de la Rosa, C., Rivadeneira, M.M. & Jetz, W. (2014) EltonTraits 1.0: species-level foraging attributes of the world's birds and mammals. Ecology, 95, 2027.
Wootton, K.L. (2017) Omnivory and stability in freshwater habitats: does theory match reality? Freshwater Biology, 62, 821-832.
Wright, D.H. (1983) Species-energy theory: an extension of species-area theory. Oikos, 41, 496-506.
Zhang, J., Qian, H., Girardello, M., Pellissier, V., Nielsen, S.E. & Svenning, J.C. (2018) Trophic interactions among vertebrate guilds and plants shape global patterns in species diversity. Proceedings of the Royal Society B: Biological Sciences, 285, 20180949.
Zhang, P., Blonk, B.A., van den Berg, R.F. & Bakker, E.S. (2018) The effect of temperature on herbivory by the omnivorous ectotherm snail Lymnaea stagnalis. Hydrobiologia, 812, 147-155.
Zhang, Y., Xiao, X., Wu, X., Zhou, S., Zhang, G., Qin, Y. et al. (2017) A global moderate resolution dataset of gross primary production of vegetation for 2000-2016. Scientific Data, 4, 170165.
معلومات مُعتمدة: Gulf Research Program; 1932889 Office of Polar Programs
فهرسة مساهمة: Keywords: global biodiversity; mammal diversity; species richness; trophic diversity; trophic levels
تواريخ الأحداث: Date Created: 20230911 Date Completed: 20231101 Latest Revision: 20231101
رمز التحديث: 20231101
DOI: 10.1111/ele.14306
PMID: 37694760
قاعدة البيانات: MEDLINE
الوصف
تدمد:1461-0248
DOI:10.1111/ele.14306