دورية أكاديمية

Abrupt permafrost thaw drives spatially heterogeneous soil moisture and carbon dioxide fluxes in upland tundra.

التفاصيل البيبلوغرافية
العنوان: Abrupt permafrost thaw drives spatially heterogeneous soil moisture and carbon dioxide fluxes in upland tundra.
المؤلفون: Rodenhizer H; Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, Arizona, USA., Natali SM; Woodwell Climate Research Center, Falmouth, Massachusetts, USA., Mauritz M; Biological Sciences, University of Texas at El Paso, El Paso, Texas, USA., Taylor MA; CliC International Project Office, World Climate Research Program, Department of Earth, Geographic and Climate Sciences, University of Massachusetts, Amherst, Massachusetts, USA., Celis G; Department of Anthropology, University of Arkansas, Fayetteville, Arkansas, USA., Kadej S; Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, Arizona, USA., Kelley AK; Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, Arizona, USA., Lathrop ER; Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, Arizona, USA., Ledman J; Bonanza Creek Long Term Ecological Research Site, University of Alaska Fairbanks, Fairbanks, Alaska, USA., Pegoraro EF; Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA., Salmon VG; Environmental Science Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA., Schädel C; Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, Arizona, USA., See C; Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, Arizona, USA., Webb EE; School of Natural Resources and Environment, University of Florida, Gainesville, Florida, USA., Schuur EAG; Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, Arizona, USA.
المصدر: Global change biology [Glob Chang Biol] 2023 Nov; Vol. 29 (22), pp. 6286-6302. Date of Electronic Publication: 2023 Sep 11.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Blackwell Pub Country of Publication: England NLM ID: 9888746 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1365-2486 (Electronic) Linking ISSN: 13541013 NLM ISO Abbreviation: Glob Chang Biol Subsets: MEDLINE
أسماء مطبوعة: Publication: : Oxford : Blackwell Pub.
Original Publication: Oxford, UK : Blackwell Science, 1995-
مستخلص: Permafrost thaw causes the seasonally thawed active layer to deepen, causing the Arctic to shift toward carbon release as soil organic matter becomes susceptible to decomposition. Ground subsidence initiated by ice loss can cause these soils to collapse abruptly, rapidly shifting soil moisture as microtopography changes and also accelerating carbon and nutrient mobilization. The uncertainty of soil moisture trajectories during thaw makes it difficult to predict the role of abrupt thaw in suppressing or exacerbating carbon losses. In this study, we investigated the role of shifting soil moisture conditions on carbon dioxide fluxes during a 13-year permafrost warming experiment that exhibited abrupt thaw. Warming deepened the active layer differentially across treatments, leading to variable rates of subsidence and formation of thermokarst depressions. In turn, differential subsidence caused a gradient of moisture conditions, with some plots becoming consistently inundated with water within thermokarst depressions and others exhibiting generally dry, but more variable soil moisture conditions outside of thermokarst depressions. Experimentally induced permafrost thaw initially drove increasing rates of growing season gross primary productivity (GPP), ecosystem respiration (R eco ), and net ecosystem exchange (NEE) (higher carbon uptake), but the formation of thermokarst depressions began to reverse this trend with a high level of spatial heterogeneity. Plots that subsided at the slowest rate stayed relatively dry and supported higher CO 2 fluxes throughout the 13-year experiment, while plots that subsided very rapidly into the center of a thermokarst feature became consistently wet and experienced a rapid decline in growing season GPP, R eco , and NEE (lower carbon uptake or carbon release). These findings indicate that Earth system models, which do not simulate subsidence and often predict drier active layer conditions, likely overestimate net growing season carbon uptake in abruptly thawing landscapes.
(© 2023 John Wiley & Sons Ltd.)
References: Abbott, B. W., & Jones, J. B. (2015). Permafrost collapse alters soil carbon stocks, respiration, CH4, and N2O in upland tundra. Global Change Biology, 21(12), 4570-4587. https://doi.org/10.1111/gcb.13069.
Andresen, C. G., Lawrence, D. M., Wilson, C. J., McGuire, A. D., Koven, C., Schaefer, K., Jafarov, E., Peng, S., Chen, X., Gouttevin, I., Burke, E., Chadburn, S., Ji, D., Chen, G., Hayes, D., & Zhang, W. (2020). Soil moisture and hydrology projections of the permafrost region-A model intercomparison. The Cryosphere, 14(2), 445-459. https://doi.org/10.5194/tc-14-445-2020.
Baldocchi, D., Falge, E., Gu, L., Olson, R., Hollinger, D., Running, S., Anthoni, P., Bernhofer, C., Davis, K., Evans, R., Fuentes, J., Goldstein, A., Katul, G., Law, B., Lee, X., Malhi, Y., Meyers, T., Munger, W., Oechel, W., … Wofsy, S. (2001). FLUXNET: A new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities. Bulletin of the American Meteorological Society, 82(11), 2415-2434. https://doi.org/10.1175/1520-0477(2001)082<2415:FANTTS>2.3.CO;2.
Biskaborn, B. K., Smith, S. L., Noetzli, J., Matthes, H., Vieira, G., Streletskiy, D. A., Schoeneich, P., Romanovsky, V. E., Lewkowicz, A. G., Abramov, A., Allard, M., Boike, J., Cable, W. L., Christiansen, H. H., Delaloye, R., Diekmann, B., Drozdov, D., Etzelmüller, B., Grosse, G., … Lantuit, H. (2019). Permafrost is warming at a global scale. Nature Communications, 10(1), 264. https://doi.org/10.1038/s41467-018-08240-4.
Cassidy, A. E., Christen, A., & Henry, G. H. R. (2016). The effect of a permafrost disturbance on growing-season carbon-dioxide fluxes in a high Arctic tundra ecosystem. Biogeosciences, 13(8), 2291-2303. https://doi.org/10.5194/bg-13-2291-2016.
Celis, G., Mauritz, M., Bracho, R., Salmon, V. G., Webb, E. E., Hutchings, J., Natali, S. M., Schädel, C., Crummer, K. G., & Schuur, E. A. G. (2017). Tundra is a consistent source of CO2 at a site with progressive permafrost thaw during 6 years of chamber and eddy covariance measurements: Tundra CO2 fluxes. Journal of Geophysical Research: Biogeosciences, 122(6), 1471-1485. https://doi.org/10.1002/2016JG003671.
Collins, C. G., Elmendorf, S. C., Hollister, R. D., Henry, G. H. R., Clark, K., Bjorkman, A. D., Myers-Smith, I. H., Prevéy, J. S., Ashton, I. W., Assmann, J. J., Alatalo, J. M., Carbognani, M., Chisholm, C., Cooper, E. J., Forrester, C., Jónsdóttir, I. S., Klanderud, K., Kopp, C. W., Livensperger, C., … Suding, K. N. (2021). Experimental warming differentially affects vegetative and reproductive phenology of tundra plants. Nature Communications, 12(1), 3442. https://doi.org/10.1038/s41467-021-23841-2.
Connon, R., Devoie, É., Hayashi, M., Veness, T., & Quinton, W. (2018). The influence of shallow taliks on permafrost thaw and active layer dynamics in subarctic Canada. Journal of Geophysical Research: Earth Surface, 123(2), 281-297. https://doi.org/10.1002/2017JF004469.
Deane-Coe, K. K., Mauritz, M., Celis, G., Salmon, V., Crummer, K. G., Natali, S. M., & Schuur, E. A. G. (2015). Experimental warming alters productivity and isotopic signatures of tundra mosses. Ecosystems, 18(6), 1070-1082. https://doi.org/10.1007/s10021-015-9884-7.
Dowle, M., & Srinivasan, A. (2021). data.table: Extension of ‘data.frame’ (1.14.0) [R]. https://CRAN.R-project.org/package=data.table.
Ekici, A., Lee, H., Lawrence, D. M., Swenson, S. C., & Prigent, C. (2019). Ground subsidence effects on simulating dynamic high-latitude surface inundation under permafrost thaw using CLM5. Geoscientific Model Development, 12(12), 5291-5300. https://doi.org/10.5194/gmd-12-5291-2019.
Elzhov, T. V., Mullen, K. M., Spiess, A.-N., & Bolker, B. M. (2016). minpack.lm: R interface to the Levenberg-Marquardt nonlinear least-squares algorithm found in MINPACK, plus support for bounds (1.2-1) [R]. https://CRAN.R-project.org/package=minpack.lm.
Emmerton, C. A., St. Louis, V. L., Humphreys, E. R., Gamon, J. A., Barker, J. D., & Pastorello, G. Z. (2016). Net ecosystem exchange of CO2 with rapidly changing high Arctic landscapes. Global Change Biology, 22(3), 1185-1200. https://doi.org/10.1111/gcb.13064.
Euskirchen, E. S., Edgar, C. W., Syndonia Bret-Harte, M., Kade, A., Zimov, N., & Zimov, S. (2017). Interannual and seasonal patterns of carbon dioxide, water, and energy fluxes from ecotonal and thermokarst-impacted ecosystems on carbon-rich permafrost soils in northeastern Siberia. Journal of Geophysical Research: Biogeosciences, 122(10), 2651-2668. https://doi.org/10.1002/2017JG004070.
Evans, S. G., Godsey, S. E., Rushlow, C. R., & Voss, C. (2020). Water tracks enhance water flow above permafrost in upland Arctic Alaska hillslopes. Journal of Geophysical Research: Earth Surface, 125(2), 5256. https://doi.org/10.1029/2019JF005256.
Farquharson, L. M., Romanovsky, V. E., Cable, W. L., Walker, D. A., Kokelj, S. V., & Nicolsky, D. (2019). Climate change drives widespread and rapid thermokarst development in very cold permafrost in the Canadian high Arctic. Geophysical Research Letters, 46(12), 6681-6689. https://doi.org/10.1029/2019GL082187.
Greenwell, B., Boehmke, B., Cunningham, J., & GBM Developers. (2020). gbm: Generalized boosted regression models (2.1.8) [R]. https://CRAN.R-project.org/package=gbm.
Harris, S. A., French, H. M., Hegginbottom, J. A., Johnston, G. H., Ladanyi, B., Sego, D. C., & van Everdingen, R. O. (1988). Glossary of permafrost and related ground-ice terms (Technical Memorandum). National Research Council of Canada. Associate Committee on Geotechnical Research, No. ACGR-TM-142, p. 159. Permafrost Subcommittee. https://doi.org/10.4224/20386561.
Heiskanen, L., Tuovinen, J.-P., Räsänen, A., Virtanen, T., Juutinen, S., Lohila, A., Penttilä, T., Linkosalmi, M., Mikola, J., Laurila, T., & Aurela, M. (2021). Carbon dioxide and methane exchange of a patterned subarctic fen during two contrasting growing seasons. Biogeosciences, 18(3), 873-896. https://doi.org/10.5194/bg-18-873-2021.
Hewitt, R. E., Taylor, D. L., Genet, H., McGuire, A. D., & Mack, C. (2018). Below-ground plant traits influence tundra plant acquisition of newly thawed permafrost nitrogen. Journal of Ecology, 107, 950-962.
Hicks Pries, C. E., Schuur, E. A. G., & Crummer, K. G. (2013). Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology, 19(2), 649-661. https://doi.org/10.1111/gcb.12058.
Hiemstra, P. H., Pebesma, E., Twenhöfel, C. J. W., & Heuvelink, G. B. M. (2009). Real-time automatic interpolation of ambient gamma dose rates from the Dutch radioactivity monitoring network. Computers & Geosciences, 35(8), 1711-1721.
Hinkel, K. M., & Hurd, J. K. (2006). Permafrost destabilization and thermokarst following snow fence installation, Barrow, Alaska, U.S.A. Arctic, Antarctic, and Alpine Research, 38(4), 530-539. https://doi.org/10.1657/1523-0430(2006)38[530:PDATFS]2.0.CO;2.
Houghton, R. A. (2007). Balancing the global carbon budget. Annual Review of Earth and Planetary Sciences, 35, 313-347.
Hugelius, G., Strauss, J., Zubrzycki, S., Harden, J. W., Schuur, E. A. G., Ping, C.-L., Schirrmeister, L., Grosse, G., Michaelson, G. J., Koven, C. D., O'Donnell, J. A., Elberling, B., Mishra, U., Camill, P., Yu, Z., Palmtag, J., & Kuhry, P. (2014). Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps. Biogeosciences, 11(23), 6573-6593. https://doi.org/10.5194/bg-11-6573-2014.
Huxman, T. E., Turnipseed, A. A., Sparks, J. P., Harley, P. C., & Monson, R. K. (2003). Temperature as a control over ecosystem CO2 fluxes in a high-elevation, subalpine forest. Oecologia, 134(4), 537-546. https://doi.org/10.1007/s00442-002-1131-1.
IPCC. (2021). Climate change 2021: The physical science basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press.
Jensen, A. E., Lohse, K. A., Crosby, B. T., & Mora, C. I. (2014). Variations in soil carbon dioxide efflux across a thaw slump chronosequence in northwestern Alaska. Environmental Research Letters, 9(2), 025001. https://doi.org/10.1088/1748-9326/9/2/025001.
Jorgenson, M. T., Douglas, T. A., Liljedahl, A. K., Roth, J. E., Cater, T. C., Davis, W. A., Frost, G. V., Miller, P. F., & Racine, C. H. (2020). The roles of climate extremes, ecological succession, and hydrology in repeated permafrost aggradation and degradation in fens on the Tanana Flats, Alaska. Journal of Geophysical Research: Biogeosciences, 125(12), 5824. https://doi.org/10.1029/2020JG005824.
Jorgenson, M. T., Harden, J., Kanevskiy, M., O'Donnell, J., Wickland, K., Ewing, S., Manies, K., Zhuang, Q., Shur, Y., Striegl, R., & Koch, J. (2013). Reorganization of vegetation, hydrology and soil carbon after permafrost degradation across heterogeneous boreal landscapes. Environmental Research Letters, 8(3), 035017. https://doi.org/10.1088/1748-9326/8/3/035017.
Jorgenson, M. T., & Osterkamp, T. E. (2005). Response of boreal ecosystems to varying modes of permafrost degradation. Canadian Journal of Forest Research, 35, 2100-2111. https://doi.org/10.1139/X05-153.
Jorgenson, M. T., Racine, C. H., Walters, J. C., & Osterkamp, T. E. (2001). Permafrost degradation and ecological changes associated with a warming climate in Central Alaska. Climatic Change, 48, 551-579.
Jorgenson, M. T., Shur, Y. L., & Pullman, E. R. (2006). Abrupt increase in permafrost degradation in Arctic Alaska. Geophysical Research Letters, 33(2), L02503. https://doi.org/10.1029/2005GL024960.
Kanevskiy, M., Shur, Y., Jorgenson, T., Brown, D. R. N., Moskalenko, N., Brown, J., Walker, D. A., Raynolds, M. K., & Buchhorn, M. (2017). Degradation and stabilization of ice wedges: Implications for assessing risk of thermokarst in northern Alaska. Geomorphology, 297, 20-42. https://doi.org/10.1016/j.geomorph.2017.09.001.
Kelsey, K. C., Pedersen, S. H., Leffler, A. J., Sexton, J. O., Feng, M., & Welker, J. M. (2021). Winter snow and spring temperature have differential effects on vegetation phenology and productivity across Arctic plant communities. Global Change Biology, 27(8), 1572-1586. https://doi.org/10.1111/gcb.15505.
Köchy, M., Hiederer, R., & Freibauer, A. (2015). Global distribution of soil organic carbon-Part 1: Masses and frequency distributions of SOC stocks for the tropics, permafrost regions, wetlands, and the world. Soil, 1(1), 351-365. https://doi.org/10.5194/soil-1-351-2015.
Kokelj, S. V., & Jorgenson, M. T. (2013). Advances in thermokarst research: Recent advances in research investigating thermokarst processes. Permafrost and Periglacial Processes, 24(2), 108-119. https://doi.org/10.1002/ppp.1779.
Kotani, A., Saito, A., Kononov, A. V., Petrov, R. E., Maximov, T. C., Iijima, Y., & Ohta, T. (2019). Impact of unusually wet permafrost soil on understory vegetation and CO2 exchange in a larch forest in eastern Siberia. Agricultural and Forest Meteorology, 265, 295-309. https://doi.org/10.1016/j.agrformet.2018.11.025.
Kuhn, M. (2021). caret: Classification and regression training (6.0-90) [R]. https://CRAN.R-project.org/package=caret.
Lantz, T. C., & Kokelj, S. V. (2008). Increasing rates of retrogressive thaw slump activity in the Mackenzie Delta region, N.W.T., Canada. Geophysical Research Letters, 35(6), L06502. https://doi.org/10.1029/2007GL032433.
Lara, M. J., Genet, H., McGuire, A. D., Euskirchen, E. S., Zhang, Y., Brown, D. R. N., Jorgenson, M. T., Romanovsky, V., Breen, A., & Bolton, W. R. (2016). Thermokarst rates intensify due to climate change and forest fragmentation in an Alaskan boreal forest lowland. Global Change Biology, 22(2), 816-829. https://doi.org/10.1111/gcb.13124.
Lawrence, D. M., Koven, C. D., Swenson, S. C., Riley, W. J., & Slater, A. G. (2015). Permafrost thaw and resulting soil moisture changes regulate projected high-latitude CO2 and CH4 emissions. Environmental Research Letters, 10(9), 094011. https://doi.org/10.1088/1748-9326/10/9/094011.
Lee, H., Schuur, E. A. G., Vogel, J. G., Lavoie, M., Bhadra, D., & Staudhammer, C. L. (2011). A spatially explicit analysis to extrapolate carbon fluxes in upland tundra where permafrost is thawing. Global Change Biology, 17(3), 1379-1393. https://doi.org/10.1111/j.1365-2486.2010.02287.x.
Lee, H., Swenson, S. C., Slater, A. G., & Lawrence, D. M. (2014). Effects of excess ground ice on projections of permafrost in a warming climate. Environmental Research Letters, 9(12), 124006. https://doi.org/10.1088/1748-9326/9/12/124006.
Luo, D., Wu, Q., Jin, H., Marchenko, S. S., Lü, L., & Gao, S. (2016). Recent changes in the active layer thickness across the northern hemisphere. Environmental Earth Sciences, 75(7), 555. https://doi.org/10.1007/s12665-015-5229-2.
Mauritz, M., Bracho, R., Celis, G., Hutchings, J., Natali, S. M., Pegoraro, E., Salmon, V. G., Schädel, C., Webb, E. E., & Schuur, E. A. G. (2017). Nonlinear CO2 flux response to 7 years of experimentally induced permafrost thaw. Global Change Biology, 23(9), 3646-3666. https://doi.org/10.1111/gcb.13661.
Meredith, M., SommerKorn, M., Cassota, S., Derksen, C., Ekaykin, A., Hallowed, A., Kofinas, G., Mackintosh, A., Melbourne-Thomas, J., Muelbert, M. M. C., Ottersen, G., Pritchard, H., Schuur, E. A. G., Boyd, P., & Hobbs, W. (2019). Polar regions. In H.-O. Pörtner, D. C. Roberts, V. Masson-Delmotte, P. Zhai, M. Tignor, E. Poloczanska, K. Mintenbeck, A. Alegría, M. Nicolai, A. Okem, J. Petzold, B. Rama, & N. M. Weyer (Eds.), IPCC special report on the ocean and cryosphere in a changing climate (pp. 203-320). Cambridge University Press.
Miner, K. R., Turetsky, M. R., Malina, E., Bartsch, A., Tamminen, J., McGuire, A. D., Fix, A., Sweeney, C., Elder, C. D., & Miller, C. E. (2022). Permafrost carbon emissions in a changing Arctic. Nature Reviews Earth & Environment, 3(1), 55-67. https://doi.org/10.1038/s43017-021-00230-3.
Mishra, U., Hugelius, G., Shelef, E., Yang, Y., Strauss, J., Lupachev, A., Harden, J. W., Jastrow, J. D., Ping, C.-L., Riley, W. J., Schuur, E. A. G., Matamala, R., Siewert, M., Nave, L. E., Koven, C. D., Fuchs, M., Palmtag, J., Kuhry, P., Treat, C. C., … Orr, A. (2021). Spatial heterogeneity and environmental predictors of permafrost region soil organic carbon stocks. Science Advances, 7(9), eaaz5236. https://doi.org/10.1126/sciadv.aaz5236.
Natali, S. M., Holdren, J. P., Rogers, B. M., Treharne, R., Duffy, P. B., Pomerance, R., & MacDonald, E. (2021). Permafrost carbon feedbacks threaten global climate goals. Proceedings of the National Academy of Sciences of the United States of America, 118(21), e2100163118. https://doi.org/10.1073/pnas.2100163118.
Natali, S. M., Schuur, E. A. G., Mauritz, M., Schade, J. D., Celis, G., Crummer, K. G., Johnston, C., Krapek, J., Pegoraro, E., Salmon, V. G., & Webb, E. E. (2015). Permafrost thaw and soil moisture driving CO2 and CH4 release from upland tundra. Journal of Geophysical Research: Biogeosciences, 120(3), 525-537. https://doi.org/10.1002/2014JG002872.
Natali, S. M., Schuur, E. A. G., Trucco, C., Hicks Pries, C. E., Crummer, K. G., & Baron Lopez, A. F. (2011). Effects of experimental warming of air, soil and permafrost on carbon balance in Alaskan tundra. Global Change Biology, 17(3), 1394-1407. https://doi.org/10.1111/j.1365-2486.2010.02303.x.
Natali, S. M., Watts, J. D., Rogers, B. M., Potter, S., Ludwig, S. M., Selbmann, A.-K., Sullivan, P. F., Abbott, B. W., Arndt, K. A., Birch, L., Björkman, M. P., Bloom, A. A., Celis, G., Christensen, T. R., Christiansen, C. T., Commane, R., Cooper, E. J., Crill, P., Czimczik, C., … Zona, D. (2019). Large loss of CO2 in winter observed across the northern permafrost region. Nature Climate Change, 9(11), 852-857. https://doi.org/10.1038/s41558-019-0592-8.
NEON (National Ecological Observatory Network). (2022). Elevation-LiDAR, RELEASE-2020. (DP3.30024.001). https://doi.org/10.48443/917d-g459.
Nitze, I., Cooley, S. W., Duguay, C. R., Jones, B. M., & Grosse, G. (2020). The catastrophic thermokarst lake drainage events of 2018 in northwestern Alaska: Fast-forward into the future. The Cryosphere, 14(12), 4279-4297. https://doi.org/10.5194/tc-14-4279-2020.
Niu, S., Luo, Y., Fei, S., Montagnani, L., Bohrer, G., Janssens, I. A., Gielen, B., Rambal, S., Moors, E., & Matteucci, G. (2011). Seasonal hysteresis of net ecosystem exchange in response to temperature change: Patterns and causes. Global Change Biology, 17(10), 3102-3114. https://doi.org/10.1111/j.1365-2486.2011.02459.x.
Nyland, K. E., Shiklomanov, N. I., Streletskiy, D. A., Nelson, F. E., Klene, A. E., & Kholodov, A. L. (2021). Long-term Circumpolar Active Layer Monitoring (CALM) program observations in Northern Alaskan tundra. Polar Geography, 44, 167-185. https://doi.org/10.1080/1088937X.2021.1988000.
Olefeldt, D., Goswami, S., Grosse, G., Hayes, D., Hugelius, G., Kuhry, P., McGuire, A. D., Romanovsky, V. E., Sannel, A. B. K., Schuur, E. A. G., & Turetsky, M. R. (2016). Circumpolar distribution and carbon storage of thermokarst landscapes. Nature Communications, 7(1), 13043. https://doi.org/10.1038/ncomms13043.
Osterkamp, T. E., Jorgenson, M. T., Schuur, E. A. G., Shur, Y. L., Kanevskiy, M. Z., Vogel, J. G., & Tumskoy, V. E. (2009). Physical and ecological changes associated with warming permafrost and thermokarst in Interior Alaska. Permafrost and Periglacial Processes, 20(3), 235-256. https://doi.org/10.1002/ppp.656.
Ping, C. L., Jastrow, J. D., Jorgenson, M. T., Michaelson, G. J., & Shur, Y. L. (2015). Permafrost soils and carbon cycling. Soil, 1(1), 147-171. https://doi.org/10.5194/soil-1-147-2015.
R Core Team. (2021). R: A language and environment for statistical computing (4.1.0) [Computer software]. R Foundation for Statistical Computing. https://www.R-project.org/.
Rantanen, M., Karpechko, A. Y., Lipponen, A., Nordling, K., Hyvärinen, O., Ruosteenoja, K., Vihma, T., & Laaksonen, A. (2022). The Arctic has warmed nearly four times faster than the globe since 1979. Communications Earth & Environment, 3(1), 168. https://doi.org/10.1038/s43247-022-00498-3.
Rodenhizer, H., Belshe, F., Celis, G., Ledman, J., Mauritz, M., Goetz, S., Sankey, T., & Schuur, E. A. G. (2022). Abrupt permafrost thaw accelerates carbon dioxide and methane release at a tussock tundra site. Arctic, Antarctic, and Alpine Research, 54(1), 443-464. https://doi.org/10.1080/15230430.2022.2118639.
Rodenhizer, H., Ledman, J., Mauritz, M., Natali, S. M., Pegoraro, E., Plaza, C., Romano, E., Schädel, C., Taylor, M., & Schuur, E. (2020). Carbon thaw rate doubles when accounting for subsidence in a permafrost warming experiment. Journal of Geophysical Research: Biogeosciences, 125(6), 5528. https://doi.org/10.1029/2019JG005528.
Rodenhizer, H., Mauritz, M., Taylor, M., Ledman, J., Natali, S., Schuur, E., & Bonanza Creek, L. T. E. R. (2023). Eight mile lake research watershed, Carbon in Permafrost Experimental Heating Research (CiPEHR): Compiled half-hourly dataset, 2009-2021 ver 2. Environmental Data Initiative. https://doi.org/10.6073/pasta/b418701259e674a8a89c8a2ba4ff6d6f.
Romanovsky, V. E., Smith, S. L., & Christiansen, H. H. (2010). Permafrost thermal state in the polar Northern Hemisphere during the international polar year 2007-2009: A synthesis. Permafrost and Periglacial Processes, 21(2), 106-116. https://doi.org/10.1002/ppp.689.
Salmon, V. G., Soucy, P., Mauritz, M., Celis, G., Natali, S. M., Mack, M. C., & Schuur, E. A. G. (2016). Nitrogen availability increases in a tundra ecosystem during five years of experimental permafrost thaw. Global Change Biology, 22(5), 1927-1941. https://doi.org/10.1111/gcb.13204.
Schädel, C., Bader, M. K.-F., Schuur, E. A. G., Biasi, C., Bracho, R., Čapek, P., De Baets, S., Diáková, K., Ernakovich, J., Estop-Aragones, C., Graham, D. E., Hartley, I. P., Iversen, C. M., Kane, E., Knoblauch, C., Lupascu, M., Martikainen, P. J., Natali, S. M., Norby, R. J., … Wickland, K. P. (2016). Potential carbon emissions dominated by carbon dioxide from thawed permafrost soils. Nature Climate Change, 6(10), 950-953. https://doi.org/10.1038/nclimate3054.
Schädel, C., Koven, C. D., Lawrence, D. M., Celis, G., Garnello, A. J., Hutchings, J., Mauritz, M., Natali, S. M., Pegoraro, E., Rodenhizer, H., Salmon, V. G., Taylor, M. A., Webb, E. E., Wieder, W. R., & Schuur, E. A. (2018). Divergent patterns of experimental and model-derived permafrost ecosystem carbon dynamics in response to Arctic warming. Environmental Research Letters, 13(10), 105002. https://doi.org/10.1088/1748-9326/aae0ff.
Schuur, E. A. G., & Abbott, B. (2011). High risk of permafrost thaw. Nature, 480(7375), 32-33. https://doi.org/10.1038/480032a.
Schuur, E. A. G., Abbott, B. W., Commane, R., Ernakovich, J., Euskirchen, E., Hugelius, G., Grosse, G., Jones, M., Koven, C., Leshyk, V., Lawrence, D., Loranty, M. M., Mauritz, M., Olefeldt, D., Natali, S., Rodenhizer, H., Salmon, V., Schädel, C., Strauss, J., … Turetsky, M. (2022). Permafrost and climate change: Carbon cycle feedbacks from the warming Arctic. Annual Review of Environment and Resources, 33, 343-371.
Schuur, E. A. G., Bockheim, J., Canadell, J. G., Euskirchen, E., Field, C. B., Goryachkin, S. V., Hagemann, S., Kuhry, P., Lafleur, P. M., Lee, H., Mazhitova, G., Nelson, F. E., Rinke, A., Romanovsky, V. E., Shiklomanov, N., Tarnocai, C., Venevsky, S., Vogel, J. G., & Zimov, S. A. (2008). Vulnerability of permafrost carbon to climate change: Implications for the global carbon cycle. BioScience, 58(8), 701-714. https://doi.org/10.1641/B580807.
Schuur, E. A. G., Bracho, R., Celis, G., Belshe, E. F., Ebert, C., Ledman, J., Mauritz, M., Pegoraro, E. F., Plaza, C., Rodenhizer, H., Romanovsky, V., Schädel, C., Schirokauer, D., Taylor, M., Vogel, J. G., & Webb, E. E. (2021). Tundra underlain by thawing permafrost persistently emits carbon to the atmosphere over 15 years of measurements. Journal of Geophysical Research: Biogeosciences, 126(6), 6044. https://doi.org/10.1029/2020JG006044.
Schuur, E. A. G., Crummer, K. G., Vogel, J. G., & Mack, M. C. (2007). Plant species composition and productivity following permafrost thaw and thermokarst in Alaskan tundra. Ecosystems, 10(2), 280-292. https://doi.org/10.1007/s10021-007-9024-0.
Schuur, E. A. G., & Mack, M. C. (2018). Ecological response to permafrost thaw and consequences for local and global ecosystem services. Annual Review of Ecology, Evolution, and Systematics, 49(1), 279-301. https://doi.org/10.1146/annurev-ecolsys-121415-032349.
Schuur, E. A. G., McGuire, A. D., Romanovsky, V. E., Schädel, C., & Mack, M. C. (2018). Arctic and boreal carbon. In N. Cavallaro, G. Shrestha, R. Birdsey, M. A. Mayes, R. G. Najjar, S. C. Reed, P. Romero-Lankao, & Z. Zhu (Eds.), Second State of the Carbon Cycle Report (SOCCR2): A sustained assessment report (pp. 428-468). U.S. Global Change Research Program. https://doi.org/10.7930/SOCCR2.2018.Ch11.
Schuur, E. A. G., Vogel, J. G., Crummer, K. G., Lee, H., Sickman, J. O., & Osterkamp, T. E. (2009). The effect of permafrost thaw on old carbon release and net carbon exchange from tundra. Nature, 459(7246), 556-559. https://doi.org/10.1038/nature08031.
Subin, Z. M., Koven, C. D., Riley, W. J., Torn, M. S., Lawrence, D. M., & Swenson, S. C. (2013). Effects of soil moisture on the responses of soil temperatures to climate change in cold regions. Journal of Climate, 26, 21.
Swanson, D. K. (2021). Permafrost thaw-related slope failures in Alaska's Arctic National Parks, c. 1980-2019. Permafrost and Periglacial Processes, 32, 392-406. 10.1002/ppp.2098.
Taylor, M., Celis, G., Ledman, J., Mauritz, M., Natali, S. M., Pegoraro, E., Schädel, C., & Schuur, E. A. G. (2021). Experimental soil warming and permafrost thaw increase CH4 emissions in an upland tundra ecosystem. JGR Biogeosciences, 126(11), e2021JG006376.
Teufel, B., & Sushama, L. (2019). Abrupt changes across the Arctic permafrost region endanger northern development. Nature Climate Change, 9(11), 858-862. https://doi.org/10.1038/s41558-019-0614-6.
Turetsky, M. R., Abbott, B. W., Jones, M. C., Anthony, K. W., Olefeldt, D., Schuur, E. A. G., Grosse, G., Kuhry, P., Hugelius, G., Koven, C., Lawrence, D. M., Gibson, C., Sannel, A. B. K., & McGuire, A. D. (2020). Carbon release through abrupt permafrost thaw. Nature Geoscience, 13(2), 138-143. https://doi.org/10.1038/s41561-019-0526-0.
Varner, R. K., Crill, P. M., Frolking, S., McCalley, C. K., Burke, S. A., Chanton, J. P., Holmes, M. E., Isogenie Project Coordinators, Saleska, S., & Palace, M. W. (2022). Permafrost thaw driven changes in hydrology and vegetation cover increase trace gas emissions and climate forcing in Stordalen Mire from 1970 to 2014. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 380(2215), 20210022. https://doi.org/10.1098/rsta.2021.0022.
Veremeeva, A., Nitze, I., Günther, F., Grosse, G., & Rivkina, E. (2021). Geomorphological and climatic drivers of thermokarst lake area increase trend (1999-2018) in the Kolyma Lowland Yedoma Region, North-Eastern Siberia. Remote Sensing, 13(2), 178. https://doi.org/10.3390/rs13020178.
Vogel, J., Schuur, E. A. G., Trucco, C., & Lee, H. (2009). Response of CO2 exchange in a tussock tundra ecosystem to permafrost thaw and thermokarst development. Journal of Geophysical Research, 114(G4), G04018. https://doi.org/10.1029/2008JG000901.
Walvoord, M. A., & Kurylyk, B. L. (2016). Hydrologic impacts of thawing permafrost-A review. Vadose Zone Journal, 15(6), 1-20. https://doi.org/10.2136/vzj2016.01.0010.
Ward Jones, M. K., Pollard, W. H., & Jones, B. M. (2019). Rapid initialization of retrogressive thaw slumps in the Canadian high Arctic and their response to climate and terrain factors. Environmental Research Letters, 14(5), 055006. https://doi.org/10.1088/1748-9326/ab12fd.
Webb, E. E., Schuur, E. A. G., Natali, S. M., Oken, K. L., Bracho, R., Krapek, J. P., Risk, D., & Nickerson, N. R. (2016). Increased wintertime CO2 loss as a result of sustained tundra warming. Journal of Geophysical Research: Biogeosciences, 121(2), 249-265. https://doi.org/10.1002/2014JG002795.
Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L., François, R., Grolemund, G., Hayes, A., Henry, L., Hester, J., Kuhn, M., Pedersen, T., Miller, E., Bache, S., Müller, K., Ooms, J., Robinson, D., Seidel, D., Spinu, V., … Yutani, H. (2019). Welcome to the Tidyverse. Journal of Open Source Software, 4(43), 1686 10.21105/joss.01686.
Zona, D., Lafleur, P. M., Hufkens, K., Gioli, B., Bailey, B., Burba, G., Euskirchen, E. S., Watts, J. D., Arndt, K. A., Farina, M., Kimball, J. S., Heimann, M., Göckede, M., Pallandt, M., Christensen, T. R., Mastepanov, M., López-Blanco, E., Dolman, A. J., Commane, R., … Oechel, W. C. (2023). Pan-Arctic soil moisture control on tundra carbon sequestration and plant productivity. Global Change Biology, 29(5), 1267-1281. https://doi.org/10.1111/gcb.16487.
معلومات مُعتمدة: DE-SC0006982 Biological and Environmental Research, Terrestrial Ecosystem Science Program; DE-SC0014085 Biological and Environmental Research, Terrestrial Ecosystem Science Program; DE-SC0020227 Biological and Environmental Research, Terrestrial Ecosystem Science Program; 1026415 National Science Foundation Bonanza Creek LTER Program; 0747195 National Science Foundation CAREER
فهرسة مساهمة: Keywords: Arctic; abrupt thaw; carbon dioxide; carbon flux; permafrost; soil moisture; thermokarst
تواريخ الأحداث: Date Created: 20230911 Latest Revision: 20231017
رمز التحديث: 20240628
DOI: 10.1111/gcb.16936
PMID: 37694963
قاعدة البيانات: MEDLINE
الوصف
تدمد:1365-2486
DOI:10.1111/gcb.16936