دورية أكاديمية

A prospective study of extraesophageal reflux and potential microaspiration in patients hospitalized with COVID-19 in Jordan.

التفاصيل البيبلوغرافية
العنوان: A prospective study of extraesophageal reflux and potential microaspiration in patients hospitalized with COVID-19 in Jordan.
المؤلفون: Al-Momani H; Department of Microbiology, Pathology and Forensic medicine, Faculty of Medicine, The Hashemite University, Zarqa, 13133, Jordan. Hafez@hu.edu.jo., Mashal S; Department of Microbiology, Pathology and Forensic medicine, Faculty of Medicine, The Hashemite University, Zarqa, 13133, Jordan., Al Balawi D; Faculty of Applied Medical Sciences, The Hashemite University, Zarqa, 13133, Jordan., Almasri M; Faculty of Applied Medical Sciences, The Hashemite University, Zarqa, 13133, Jordan., Al-Shudifat AE; Department of Internal and family Medicine, Faculty of Medicine, The Hashemite University, Zarqa, 13133, Jordan., Khasawneh AI; Department of Microbiology, Pathology and Forensic medicine, Faculty of Medicine, The Hashemite University, Zarqa, 13133, Jordan., Pearson J; Translational and clinical research and Biosciences institutes, Newcastle University Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK., Ward C; Translational and clinical research and Biosciences institutes, Newcastle University Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.
المصدر: BMC pulmonary medicine [BMC Pulm Med] 2023 Sep 12; Vol. 23 (1), pp. 341. Date of Electronic Publication: 2023 Sep 12.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: BioMed Central Country of Publication: England NLM ID: 100968563 Publication Model: Electronic Cited Medium: Internet ISSN: 1471-2466 (Electronic) Linking ISSN: 14712466 NLM ISO Abbreviation: BMC Pulm Med Subsets: MEDLINE
أسماء مطبوعة: Original Publication: London : BioMed Central, [2001]-
مواضيع طبية MeSH: COVID-19*/epidemiology , Gastroesophageal Reflux*/epidemiology, Humans ; Prospective Studies ; SARS-CoV-2 ; Jordan/epidemiology ; Angiotensin-Converting Enzyme 2 ; Cohort Studies ; Pepsin A
مستخلص: Background: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) lung infection has represented a global challenge. Intriguingly, it has been shown that the alveolar lung epithelium expresses little Angiotensin Converting Enzyme receptor protein (ACE2), the entry receptor for SARS-CoV-2. Upper airway establishment of infection and translocation to the lung is well documented but other anatomical niches may be relevant to potentially serious lung infection. ACE2 is heavily expressed in the gastrointestinal tract and gastrointestinal symptoms support a clinical diagnosis of Coronavirus disease 2019 (COVID-19). This suggests a research question and the need to gather patient data exploring potential aerodigestive links in SARS-CoV-2 tranlocation and infection which may be relevant in the peripheral lung. This recognizes anatomical proximity and concepts of bi-directional movement between the Gastrointestinal and lung systems in normal physiology and disease. We have therefore explored the potential for gastro oesophageal reflux disease (GORD) micro aspiration and aeorodigestive pathophysiology in a novel prospective investigation of patients hospitalized with COVID-19.
Methods: This is a prospective descriptive cohort study of 210 patients who were hospitalized with a confirmed diagnosis of COVID-19. The cohort was divided into three groups of patients based on symptom severity and radiological results. The Reflux Symptom Index (RSI) was used to evaluate the presence and severity of GOR. An RSI greater than 13 is considered to be abnormal. Patients' saliva samples were tested using enzyme-linked immunosorbent assay (ELISA) to determine the level of salivary pepsin among the cohort of patients.
Results: A total of 210 patients with COVID-19 were enrolled in the study with 55.2% (116/210) classified as mildly ill, 31.9% (67/210) moderately ill and 12.9% (27/210) as severely ill. 34% (72/210) of the patients had an RSI score of over 13 and a median salivary pepsin value of 54 ± 29 ng/ml which suggested an incidence of extraesophageal reflux (EOR) in around a third of patients. The presence of respiratory comorbid conditions, an RSI score of over 13 and a salivary pepsin level of > 76ng/ml increased the risk of developing a more severe COVID-19 infection.
Conclusion: The study showed a high prevalence of EOR among the study cohort and provide the first prospective evidence suggesting the potential for aerodigestive pathophysiology including microaspiration in COVID-19 disease. We believe that the results of our study support the need for more extensive research.
(© 2023. BioMed Central Ltd., part of Springer Nature.)
References: Weiss SR, Navas-Martin S. Coronavirus pathogenesis and the emerging pathogen severe acute respiratory syndrome coronavirus. Microbiol Mol Biol Rev. 2005;69(4):635–64. (PMID: 16339739130680110.1128/MMBR.69.4.635-664.2005)
Zachariah P, Johnson CL, Halabi KC, Ahn D, Sen AI, Fischer A et al. Epidemiology, clinical features, and disease severity in patients with coronavirus disease 2019 (COVID-19) in a children’s hospital in New York City, New York. JAMA pediatrics. 2020;174(10):e202430-e.
So M, Kabata H, Fukunaga K, Takagi H, Kuno T. Radiological and functional lung sequelae of COVID-19: a systematic review and meta-analysis. BMC Pulm Med. 2021;21(1):1–16. (PMID: 10.1186/s12890-021-01463-0)
Lai C-C, Shih T-P, Ko W-C, Tang H-J, Hsueh P-R. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): the epidemic and the challenges. Int J Antimicrob Agents. 2020;55(3):105924. (PMID: 32081636712780010.1016/j.ijantimicag.2020.105924)
Singh S, Mcnab C, Olson RM, Bristol N, Nolan C, Bergstrøm E, et al. How an outbreak became a pandemic: a chronological analysis of crucial junctures and international obligations in the early months of the COVID-19 pandemic. The Lancet. 2021;398(10316):2109–24. (PMID: 10.1016/S0140-6736(21)01897-3)
Umakanthan S, Sahu P, Ranade AV, Bukelo MM, Rao JS, Abrahao-Machado LF, et al. Origin, transmission, diagnosis and management of coronavirus disease 2019 (COVID-19). Postgrad Med J. 2020;96(1142):753–8. (PMID: 32563999)
Guan Y, Zheng B, He Y, Liu X, Zhuang Z, Cheung C, et al. Isolation and characterization of viruses related to the SARS coronavirus from animals in southern China. Science. 2003;302(5643):276–8. (PMID: 1295836610.1126/science.1087139)
Woo PC, Lau SK, Chu C-m, Chan K-h, Tsoi H-w, Huang Y, et al. Characterization and complete genome sequence of a novel coronavirus, coronavirus HKU1, from patients with pneumonia. J Virol. 2005;79(2):884–95. (PMID: 1561331753859310.1128/JVI.79.2.884-895.2005)
Lu R, Zhao X, Li J, Niu P, Yang B, Wu H, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. The Lancet. 2020;395(10224):565–74. (PMID: 10.1016/S0140-6736(20)30251-8)
Cui J, Li F, Shi Z-L. Origin and evolution of pathogenic coronaviruses. Nat Rev Microbiol. 2019;17(3):181–92. (PMID: 3053194710.1038/s41579-018-0118-9)
Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. The Lancet. 2020;395(10223):497–506. (PMID: 10.1016/S0140-6736(20)30183-5)
Mondini L, Salton F, Trotta L, Bozzi C, Pozzan R, Barbieri M, et al. Host-based treatments for severe COVID-19. Curr Issues Mol Biol. 2023;45(4):3102–21. (PMID: 371857271013692410.3390/cimb45040203)
Salton F, Confalonieri P, Campisciano G, Cifaldi R, Rizzardi C, Generali D, et al. Cytokine profiles as potential prognostic and therapeutic markers in SARS-CoV-2-induced ARDS. J Clin Med. 2022;11(11):2951. (PMID: 35683340918098310.3390/jcm11112951)
Mehta OP, Bhandari P, Raut A, Kacimi SEO, Huy NT. Coronavirus disease (COVID-19): comprehensive review of clinical presentation. Front Public Health. 2021;8:582932. (PMID: 33520910784432010.3389/fpubh.2020.582932)
Pan L, Mu M, Yang P, Sun Y, Wang R, Yan J et al. Clinical characteristics of COVID-19 patients with digestive symptoms in Hubei, China: a descriptive, cross-sectional, multicenter study. Am J Gastroenterol. 2020;115.
Wong SH, Lui RN, Sung JJ. Covid-19 and the digestive system. J Gastroenterol Hepatol. 2020;35(5):744–8. (PMID: 3221595610.1111/jgh.15047)
Gao QY, Chen YX, Fang JY. 2019 Novel coronavirus infection and gastrointestinal tract. Journal of digestive diseases. 2020;21(3):125.
Penninger JM, Grant MB, Sung JJ. The role of angiotensin converting enzyme 2 in modulating gut microbiota, intestinal inflammation, and coronavirus infection. Gastroenterology. 2021;160(1):39–46. (PMID: 3313010310.1053/j.gastro.2020.07.067)
Hönzke K, Obermayer B, Mache C, Fathykova D, Kessler M, Dökel S et al. Human lungs show limited permissiveness for SARS-CoV-2 due to scarce ACE2 levels but virus-induced expansion of inflammatory macrophages. Eur Respir J. 2022;60(6).
Sifrim D, Castell D, Dent J, Kahrilas PJ. Gastro-oesophageal reflux monitoring: review and consensus report on detection and definitions of acid, non-acid, and gas reflux. Gut. 2004;53(7):1024–31. (PMID: 15194656177411410.1136/gut.2003.033290)
Herbella FA, Patti MG. Gastroesophageal reflux disease: from pathophysiology to treatment. World J Gastroenterol. 2010;16(30):3745–9. (PMID: 20698035292108410.3748/wjg.v16.i30.3745)
Zerbib F, Bruley des Varannes S, Roman S, Pouderoux P, Artigue F, Chaput U, et al. Normal values and day-to‐day variability of 24‐h ambulatory oesophageal impedance‐pH monitoring in a belgian–french cohort of healthy subjects. Aliment Pharmacol Ther. 2005;22(10):1011–21. (PMID: 1626897710.1111/j.1365-2036.2005.02677.x)
Boeckxstaens G, El-Serag HB, Smout AJ, Kahrilas PJ. Symptomatic reflux disease: the present, the past and the future. Gut. 2014;63(7):1185–93. (PMID: 2460793610.1136/gutjnl-2013-306393)
Bassis CM, Erb-Downward JR, Dickson RP, Freeman CM, Schmidt TM, Young VB, et al. Analysis of the Upper Respiratory Tract Microbiotas as the source of the lung and gastric microbiotas in healthy individuals. mBio. 2015;6(2):e00037–15. (PMID: 25736890435801710.1128/mBio.00037-15)
Vakil N. Disease definition, clinical manifestations, epidemiology and natural history of GERD. Best Pract Res Clin Gastroenterol. 2010;24(6):759–64. (PMID: 2112669110.1016/j.bpg.2010.09.009)
Hatton CF, Botting RA, Dueñas ME, Haq IJ, Verdon B, Thompson BJ, et al. Delayed induction of type I and III interferons mediates nasal epithelial cell permissiveness to SARS-CoV-2. Nat Commun. 2021;12(1):7092. (PMID: 34876592865165810.1038/s41467-021-27318-0)
Jackson RM, Hatton CF, Spegarova JS, Georgiou M, Collin J, Stephenson E, et al. Conjunctival epithelial cells resist productive SARS-CoV-2 infection. Stem Cell Reports. 2022;17(7):1699–713. (PMID: 35750043922234910.1016/j.stemcr.2022.05.017)
Button BM, Roberts S, Kotsimbos TC, Levvey BJ, Williams TJ, Bailey M, et al. Gastroesophageal reflux (symptomatic and silent): a potentially significant problem in patients with cystic fibrosis before and after lung transplantation. J Heart lung Transplantation. 2005;24(10):1522–9. (PMID: 10.1016/j.healun.2004.11.312)
Blondeau K, Dupont LJ, Mertens V, Verleden G, Malfroot A, Vandenplas Y, et al. Gastro-oesophageal reflux and aspiration of gastric contents in adult patients with cystic fibrosis. Gut. 2008;57(8):1049–55. (PMID: 1837249710.1136/gut.2007.146134)
Barron RP, Carmichael RP, Marcon MA, Sandor GK. Dental erosion in gastroesophageal reflux disease. J Can Dent Assoc. 2003;69(2):84–9. (PMID: 12559056)
Palm K, Sawicki G, Rosen R. The impact of reflux burden on Pseudomonas positivity in children with cystic fibrosis. Pediatr Pulmonol. 2012;47(6):582–7. (PMID: 2216248410.1002/ppul.21598)
Rosen R, Hu L, Amirault J, Khatwa U, Ward DV, Onderdonk A. 16S community profiling identifies proton pump inhibitor related differences in gastric, lung, and oropharyngeal microflora. J Pediatr. 2015;166(4):917–23. (PMID: 25661411438059210.1016/j.jpeds.2014.12.067)
Blake K, Teague WG. Gastroesophageal reflux disease and childhood asthma. Curr Opin Pulm Med. 2013;19(1):24–9. (PMID: 23197288)
Huang C, Liu Y, Shi G. A systematic review with meta-analysis of gastroesophageal reflux disease and exacerbations of chronic obstructive pulmonary disease. BMC Pulm Med. 2020;20(1):1–9. (PMID: 10.1186/s12890-019-1027-z)
Jones R, Pearson J, Ward C. Functional dyspepsia. N Engl J Med. 2016.
Almario CV, Chey WD, Spiegel BM. Increased risk of COVID-19 among users of proton pump inhibitors. Am J Gastroenterol. 2020.
Du Moulin G, Hedley-Whyte J, Paterson D, Lisbon A. Aspiration of gastric bacteria in antacid-treated patients: a frequent cause of postoperative colonisation of the airway. The Lancet. 1982;319(8266):242–5. (PMID: 10.1016/S0140-6736(82)90974-6)
Al-Momani H, Perry A, Nelson A, Stewart CJ, Jones R, Krishnan A, et al. Exposure to bile and gastric juice can impact the aerodigestive microbiome in people with cystic fibrosis. Sci Rep. 2022;12(1):1–11. (PMID: 10.1038/s41598-022-15375-4)
Al-Momani H, Perry A, Stewart C, Jones R, Krishnan A, Robertson A, et al. Microbiological profiles of sputum and gastric juice aspirates in cystic fibrosis patients. Sci Rep. 2016;6(1):1–8. (PMID: 10.1038/srep26985)
Madan JC, Koestler DC, Stanton BA, Davidson L, Moulton LA, Housman ML, et al. Serial analysis of the gut and respiratory microbiome in cystic fibrosis in infancy: interaction between intestinal and respiratory tracts and impact of nutritional exposures. MBio. 2012;3(4):e00251–12. (PMID: 22911969342869410.1128/mBio.00251-12)
Segal R, Dan M, Pogoreliuk I, Leibovitz A. Pathogenic colonization of the stomach in enterally fed elderly patients: comparing percutaneous endoscopic gastrostomy with nasogastric tube. J Am Geriatr Soc. 2006;54(12):1905–8. (PMID: 1719849710.1111/j.1532-5415.2006.00964.x)
Chen Y, Chen C, Ouyang Z, Duan C, Liu J, Hou X, et al. Prevalence and beverage-related risk factors of gastroesophageal reflux disease: an original study in chinese college freshmen, a systemic review and meta‐analysis. Neurogastroenterology & Motility. 2022;34(5):e14266. (PMID: 10.1111/nmo.14266)
El-Serag HB, Sweet S, Winchester CC, Dent J. Update on the epidemiology of gastro-oesophageal reflux disease: a systematic review. Gut. 2014;63(6):871–80. (PMID: 2385321310.1136/gutjnl-2012-304269)
Patti MG. An evidence-based approach to the treatment of gastroesophageal reflux disease. JAMA Surg. 2016;151(1):73–8. (PMID: 2662996910.1001/jamasurg.2015.4233)
Yang J, Zheng Y, Gou X, Pu K, Chen Z, Guo Q, et al. Prevalence of comorbidities and its effects in coronavirus disease 2019 patient: a systematic review and meta-analysis. Int J Infect Dis. 2020;94:91–5. (PMID: 32173574719463810.1016/j.ijid.2020.03.017)
Zhang S. Prevalence of comorbidities and its effects in coronavirus disease 2019 patients: a systematic review and meta-analysis. Int J Infect Dis. 2020.
Belafsky PC, Postma GN, Koufman JA. Validity and reliability of the reflux symptom index (RSI). J Voice. 2002;16(2):274–7. (PMID: 1215038010.1016/S0892-1997(02)00097-8)
Schindler A, Mozzanica F, Ginocchio D, Peri A, Bottero A, Ottaviani F. Reliability and clinical validity of the italian reflux Symptom Index. J Voice. 2010;24(3):354–8. (PMID: 1930374010.1016/j.jvoice.2008.08.008)
Lechien JR, Bobin F, Muls V, Thill MP, Horoi M, Ostermann K, et al. Validity and reliability of the reflux symptom score. Laryngoscope. 2020;130(3):E98–E107. (PMID: 3098300210.1002/lary.28017)
National Institutes of Health NIH. COVID-19 Treatment Guidelines Panel. Coronavirus Disease 2019 (COVID-19) Treatment Guidelines 2022 [Available from: https://www.covid19treatmentguidelines.nih.gov/ .
Wilson RL, Stevenson CE. Anatomy and physiology of the stomach. Shackelford’s surgery of the alimentary tract. 2 ed. Volume Set: Elsevier; 2019. pp. 634–46.
Calvo-Henríquez C, Ruano-Ravina A, Vaamonde P, Martínez-Capoccioni G, Martín-Martín C. Is pepsin a reliable marker of laryngopharyngeal reflux? A systematic review. Otolaryngology–Head and Neck Surgery. 2017;157(3):385–91. (PMID: 2858548810.1177/0194599817709430)
Wang Y-J, Lang X-Q, Wu D, He Y-Q, Lan C-H, Wang B, et al. Salivary pepsin as an intrinsic marker for diagnosis of sub-types of gastroesophageal reflux disease and gastroesophageal reflux disease-related disorders. J Neurogastroenterol Motil. 2020;26(1):74. (PMID: 31650768695519010.5056/jnm19032)
Dettmar PW, Watson M, McGlashan J, Tatla T, Nicholaides A, Bottomley K, et al. A multicentre study in UK voice clinics evaluating the non-invasive reflux diagnostic peptest in LPR patients. SN Compr Clin Med. 2020;2:57–65. (PMID: 10.1007/s42399-019-00184-0)
Gallo Marin B, Aghagoli G, Lavine K, Yang L, Siff EJ, Chiang SS, et al. Predictors of COVID-19 severity: a literature review. Rev Med Virol. 2021;31(1):1–10. (PMID: 3284504210.1002/rmv.2146)
Guo Z, Wu H, Jiang J, Zhang C. Pepsin in saliva as a diagnostic marker for gastroesophageal reflux disease: a meta-analysis. Med Sci Monitor: Int Med J Experimental Clin Res. 2018;24:9509. (PMID: 10.12659/MSM.913978)
Kim SI, Lechien JR, Ayad T, Jia H, Khoddami SM, Enver N, et al. Management of laryngopharyngeal reflux in Asia. Clin Exp Otorhinolaryngol. 2020;13(3):299. (PMID: 32392640743542710.21053/ceo.2019.01669)
Praud J-P. Upper airway reflexes in response to gastric reflux. Paediatr Respir Rev. 2010;11(4):208–12. (PMID: 2110917810.1016/j.prrv.2010.07.001)
Ates F, Vaezi MF. Approach to the patient with presumed extraoesophageal GERD. Best Pract Res Clin Gastroenterol. 2013;27(3):415–31. (PMID: 2399897910.1016/j.bpg.2013.06.009)
Bulmer DM, Ali MS, Brownlee IA, Dettmar PW, Pearson JP. Laryngeal mucosa: its susceptibility to damage by acid and pepsin. Laryngoscope. 2010;120(4):777–82. (PMID: 2021365510.1002/lary.20665)
Huang Y, Chen S, Yang Z, Guan W, Liu D, Lin Z, et al. SARS-CoV-2 viral load in clinical samples from critically ill patients. Am J Respir Crit Care Med. 2020;201(11):1435–8. (PMID: 32293905725864510.1164/rccm.202003-0572LE)
Lee EJ, Han S, Hyun S-W, Song GB, Ha S-D. Survival of human coronavirus 229E at different temperatures on various food-contact surfaces and food and under simulated digestive conditions. Food Res Int. 2022;162:112014. (PMID: 36461303952687310.1016/j.foodres.2022.112014)
Fass R, Boeckxstaens GE, El-Serag H, Rosen R, Sifrim D, Vaezi MF. Gastro-oesophageal reflux disease. Nat Reviews Disease Primers. 2021;7(1):1–23.
Huxley EJ, Viroslav J, Gray WR, Pierce AK. Pharyngeal aspiration in normal adults and patients with depressed consciousness. Am J Med. 1978;64(4):564–8. (PMID: 64572210.1016/0002-9343(78)90574-0)
Gleeson K, Maxwell SL, Eggli DF. Quantitative aspiration during sleep in normal subjects. Chest. 1997;111(5):1266–72. (PMID: 914958110.1378/chest.111.5.1266)
Amirian ES. Potential fecal transmission of SARS-CoV-2: current evidence and implications for public health. Int J Infect Dis. 2020;95:363–70. (PMID: 32335340719551010.1016/j.ijid.2020.04.057)
Jefferson T, Spencer E, Brassey J, Heneghan C. Viral cultures for COVID-19 infectivity assessment–a systematic review (Update 4). MedRxiv. 2020.
Chen L, Lou J, Bai Y, Wang M. COVID-19 disease with positive fecal and negative pharyngeal and sputum viral tests. Am J Gastroenterol. 2020;115.
Xu Y, Li X, Zhu B, Liang H, Fang C, Gong Y, et al. Characteristics of pediatric SARS-CoV-2 infection and potential evidence for persistent fecal viral shedding. Nat Med. 2020;26(4):502–5. (PMID: 32284613709510210.1038/s41591-020-0817-4)
Wang W, Xu Y, Gao R, Lu R, Han K, Wu G, et al. Detection of SARS-CoV-2 in different types of clinical specimens. JAMA. 2020;323(18):1843–4. (PMID: 321597757066521)
Al-Momani H, Perry A, Stewart C, Jones R, Krishnan A, Robertson A, et al. Microbiological profiles of sputum and gastric juice aspirates in cystic fibrosis patients. Sci Rep. 2016;6:26985. (PMID: 27245316488789610.1038/srep26985)
Al-Momani H, Perry A, Jones R, Bourke S, Doe S, Perry J, et al. Nontuberculous mycobacteria in gastrostomy fed patients with cystic fibrosis. Sci Rep. 2017;7:46546. (PMID: 28436419540226910.1038/srep46546)
Yan C, Chen Y, Sun C, Ahmed MA, Bhan C, Cheng C et al. Will proton pump inhibitors lead to a higher risk of COVID-19 infection and progression to severe disease? A meta-analysis. medRxiv. 2020.
Dumic I, Nordin T, Jecmenica M, Stojkovic Lalosevic M, Milosavljevic T, Milovanovic T. Gastrointestinal tract disorders in older age. Canadian Journal of Gastroenterology and Hepatology. 2019;2019.
Xiao X, Chakraborti S, Dimitrov AS, Gramatikoff K, Dimitrov DS. The SARS-CoV S glycoprotein: expression and functional characterization. Biochem Biophys Res Commun. 2003;312(4):1159–64. (PMID: 14651994711101010.1016/j.bbrc.2003.11.054)
Darnell ME, Subbarao K, Feinstone SM, Taylor DR. Inactivation of the coronavirus that induces severe acute respiratory syndrome, SARS-CoV. J Virol Methods. 2004;121(1):85–91. (PMID: 15350737711291210.1016/j.jviromet.2004.06.006)
Chan K, Sridhar S, Zhang R, Chu H, Fung A-F, Chan G, et al. Factors affecting stability and infectivity of SARS-CoV-2. J Hosp Infect. 2020;106(2):226–31. (PMID: 32652214734364410.1016/j.jhin.2020.07.009)
Zhou L, Niu Z, Jiang X, Zhang Z, Zheng Y, Wang Z et al. Systemic analysis of tissue cells potentially vulnerable to SARS-CoV-2 infection by the protein-proofed single-cell RNA profiling of ACE2, TMPRSS2 and Furin proteases. BioRxiv. 2020.
Eren E, Arslanoğlu S, Aktaş A, Kopar A, Ciğer E, Önal K, et al. Factors confusing the diagnosis of laryngopharyngeal reflux: the role of allergic rhinitis and inter-rater variability of laryngeal findings. Eur Arch Otorhinolaryngol. 2014;271(4):743–7. (PMID: 2399959410.1007/s00405-013-2682-y)
Brown HJ, Kuhar HN, Plitt MA, Husain I, Batra PS, Tajudeen BA. The impact of laryngopharyngeal reflux on patient-reported measures of chronic rhinosinusitis. Annals of Otology Rhinology & Laryngology. 2020;129(9):886–93. (PMID: 10.1177/0003489420921424)
Lechien JR, Akst LM, Hamdan AL, Schindler A, Karkos PD, Barillari MR, et al. Evaluation and management of laryngopharyngeal reflux disease: state of the art review. Otolaryngology–Head and Neck Surgery. 2019;160(5):762–82. (PMID: 3074448910.1177/0194599819827488)
Elezkurtaj S, Greuel S, Ihlow J, Michaelis EG, Bischoff P, Kunze CA, et al. Causes of death and comorbidities in hospitalized patients with COVID-19. Sci Rep. 2021;11(1):1–9. (PMID: 10.1038/s41598-021-82862-5)
Polverino F, Stern DA, Ruocco G, Balestro E, Bassetti M, Candelli M, et al. Comorbidities, cardiovascular therapies, and COVID-19 mortality: a nationwide, italian observational study (ItaliCO). Front Cardiovasc Med. 2020;7:585866. (PMID: 33195473758363510.3389/fcvm.2020.585866)
Khan MMA, Khan MN, Mustagir MG, Rana J, Islam MS, Kabir MI. Effects of underlying morbidities on the occurrence of deaths in COVID-19 patients: a systematic review and meta-analysis. J Global Health. 2020;10(2).
معلومات مُعتمدة: 1331 Hashemite University
فهرسة مساهمة: Keywords: COVID-19; COVID-19 transmission; Extraesophageal reflux; Gastrointestinal system; Pepsin
المشرفين على المادة: EC 3.4.17.23 (Angiotensin-Converting Enzyme 2)
EC 3.4.23.1 (Pepsin A)
تواريخ الأحداث: Date Created: 20230911 Date Completed: 20230913 Latest Revision: 20231120
رمز التحديث: 20231215
مُعرف محوري في PubMed: PMC10496175
DOI: 10.1186/s12890-023-02638-7
PMID: 37697259
قاعدة البيانات: MEDLINE
الوصف
تدمد:1471-2466
DOI:10.1186/s12890-023-02638-7