دورية أكاديمية

Chiral recognition mechanism studies of Tyr-Arg-Phe-Lys-NH 2 tetrapeptide on crown ether-based chiral stationary phase.

التفاصيل البيبلوغرافية
العنوان: Chiral recognition mechanism studies of Tyr-Arg-Phe-Lys-NH 2 tetrapeptide on crown ether-based chiral stationary phase.
المؤلفون: Upmanis T; Latvian Institute of Organic Synthesis, Riga, Latvia., Sevostjanovs E; Latvian Institute of Organic Synthesis, Riga, Latvia., Kažoka H; Latvian Institute of Organic Synthesis, Riga, Latvia.
المصدر: Chirality [Chirality] 2024 Jan; Vol. 36 (1), pp. e23619. Date of Electronic Publication: 2023 Sep 12.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Wiley Country of Publication: United States NLM ID: 8914261 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1520-636X (Electronic) Linking ISSN: 08990042 NLM ISO Abbreviation: Chirality Subsets: MEDLINE
أسماء مطبوعة: Original Publication: New York, NY : Wiley
مواضيع طبية MeSH: Crown Ethers*/chemistry, Stereoisomerism ; Tyrosine ; Phenylalanine ; Chromatography, High Pressure Liquid/methods
مستخلص: Even though chiral recognition for crown-ether CSPs is generally understood, on a molecular level, exact mechanisms for the resolution are still unclear. Furthermore, short peptide analytes often contain multiple amino moieties capable of binding to the crown ether selector. In order to extend the understanding in chiral recognition mechanisms, polar organic mode separation of Tyr-Arg-Phe-Lys-NH 2 tetrapeptide llll/dddd enantiomers on S- and R-(3,3'-diphenyl-1,1'-binaphthyl)-20-crown-6 stationary phases was studied with 50-mM perchloric acid in methanol as mobile phase. Deviation from the generally acceptable 1:1 stoichiometry was supported by mass spectroscopy analysis of the formed complexes between tetrapeptide enantiomer and crown ether selectors, which revealed adducts possessing 1:1, 1:2, and 1:3 stoichiometry. Further investigation of complexation induced shifts by NMR indicated on different binding mechanisms between llll/dddd enantiomers of Tyr-Arg-Phe-Lys-NH 2 and crown ether selectors. Enantioselective proton shifts were observed in studied tetrapeptide tyrosine and phenylalanine residues exclusively for llll enantiomer upon binding with S-(3,3'-diphenyl-1,1'-binaphthyl)-20-crown-6 selector (and dddd enantiomer with R-(3,3'-diphenyl-1,1'-binaphthyl)-20-crown-6 selector), indicating that these two amino acid residues contribute to chiral recognition. The obtained results were in agreement with the LC data.
(© 2023 Wiley Periodicals LLC.)
References: Teixeira J, Tiritan ME, Pinto MMM, Fernandes C. Chiral stationary phases for liquid chromatography: recent developments. Molecules. 2019;24(5):865. doi:10.3390/molecules24050865.
Chankvetadze B. Application of enantioselective separation techniques to bioanalysis of chiral drugs and their metabolites. TrAC Trends Anal Chem. 2021;143:116332. doi:10.1016/j.trac.2021.116332.
Tong S. Liquid-liquid chromatography in enantioseparations. J Chromatogr A. 2020;1626:461345. doi:10.1016/j.chroma.2020.461345.
Ianni F, Pucciarini L, Carotti A, Natalini S, Raskildina GZ, Sardella R. Last ten years (2008-2018) of chiral ligand-exchange chromatography in HPLC: an updated review. J Sep Sci. 2019;42(1):21-37. doi:10.1002/jssc.201800724.
Dumitrascuta M, Bermudez M, Ballet S, Wolber G, Spetea M. Mechanistic understanding of peptide analogues, DALDA, [Dmt1]DALDA, and KGOP01, binding to the Mu opioid receptor. Molecules. 2020;25(9):2087. doi:10.3390/molecules25092087.
Upmanis T, Kažoka H, Arsenyan P. A study of tetrapeptide enantiomeric separation on crown ether based chiral stationary phases. J Chromatogr A. 2020;1622:461152. doi:10.1016/j.chroma.2020.461152.
Upmanis T, Kažoka H. Mechanistic insights in chiral recognition of μ-opioid receptor agonist tetrapeptide on crown ether chiral stationary phase. J Chromatogr Open. 2021;1:100016. doi:10.1016/j.jcoa.2021.100016.
Upmanis T, Kažoka H. Influence of amino acid residue on chromatographic behaviour of μ-opioid receptor agonist tetrapeptide analogue on crown ether based chiral stationary phase. J Chromatogr A. 2022;1673:463059. doi:10.1016/j.chroma.2022.463059.
Carenzi G, Sacchi S, Abbondi M, Pollegioni L. Direct chromatographic methods for enantioresolution of amino acids: recent developments. Amino Acids. 2020;52(6-7):849-862. doi:10.1007/s00726-020-02873-w.
Upmanis T, Kažoka H. Application of commercially available crown ether chiral stationary phases for separation of tetrapeptide stereoisomers. Acta Pharm Hung. 2021;91(3-4):324-325. doi:10.33892/aph.2021.91(3-4).324-325.
Kyba EB, Kenji K, Sousa LR, Siegel MG, Cram DJ. Chiral recognition in molecular complexing. J Am Chem Soc. 1973;95(8):2692-2693. doi:10.1021/ja00789a051.
Avilés-Moreno JR, Quesada-Moreno MM, López-González JJ, Martínez-Haya B. Chiral recognition of amino acid enantiomers by a crown ether: chiroptical IR-VCD response and computational study. J Phys Chem B. 2013;117(32):9362-9370. doi:10.1021/jp405027s.
He J, Zheng Z-P, Zhu Q, Guo F, Chen J. Encapsulation mechanism of oxyresveratrol by β-cyclodextrin and hydroxypropyl-β-cyclodextrin and computational analysis. Molecules. 2017;22(11):1801. doi:10.3390/molecules22111801.
Ma S, Shen S, Lee H, et al. Vibrational circular dichroism of amylose carbamate: structure and solvent-induced conformational changes. Tetrahedron Asymmetry. 2008;19(18):2111-2114. doi:10.1016/j.tetasy.2008.08.027.
Bang E, Jung J-W, Lee W, Lee DW, Lee W. Chiral recognition of (18-crown-6)-tetracarboxylic acid as a chiral selector determined by NMR spectroscopy. J Chem Soc, Perkin Trans 2. 2001;9(9):1685-1692. doi:10.1039/b102026i.
Yashima E, Yamamoto C, Okamoto Y. NMR studies of chiral discrimination relevant to the liquid chromatographic enantioseparation by a cellulose phenylcarbamate derivative. J Am Chem Soc. 1996;118(17):4036-4048. doi:10.1021/ja960050x.
Czerwenka C, Zhang MM, Kählig H, Maier NM, Lipkowitz KB, Lindner W. Chiral recognition of peptide enantiomers by cinchona alkaloid derived chiral selectors: mechanistic investigations by liquid chromatography, NMR spectroscopy, and molecular modeling. J Org Chem. 2003;68(22):8315-8327. doi:10.1021/jo0346914.
Chankvetadze B. Combined approach using capillary electrophoresis and NMR spectroscopy for an understanding of enantioselective recognition mechanisms by cyclodextrins. Chem Soc Rev. 2004;33(6):337-347. doi:10.1039/b111412n.
Fejős I, Varga E, Benkovics G, et al. Comparative evaluation of the chiral recognition potential of single-isomer sulfated beta-cyclodextrin synthesis intermediates in non-aqueous capillary electrophoresis. J Chromatogr A. 2016;1467:454-462. doi:10.1016/j.chroma.2016.07.033.
Gerbaux P, De Winter J, Cornil D, et al. Noncovalent interactions between ([18]Crown-6)-tetracarboxylic acid and amino acids: electrospray-ionization mass spectrometry investigation of the chiral-recognition processes. Chem a Eur J. 2008;14(35):11039-11049. doi:10.1002/chem.200801372.
Schug KA, Maier NM, Lindner W. Deuterium isotope effects observed during competitive binding chiral recognition electrospray ionization-mass spectrometry of cinchona alkaloid-based systems. J Mass Spectrom. 2006;41(2):157-161. doi:10.1002/jms.983.
Czerwenka C, Lämmerhofer M, Maier NM, Rissanen K, Lindner W. Direct high-performance liquid chromatographic separation of peptide enantiomers: study on chiral recognition by systematic evaluation of the influence of structural features of the chiral selectors on enantioselectivity. Anal Chem. 2002;74(21):5658-5666. doi:10.1021/ac020372l.
Nagata H, Nishi H, Kamigauchi M, Ishida T. Structural scaffold of 18-crown-6 tetracarboxylic acid for optical resolution of chiral amino acid: X-ray crystal analyses and energy calculations of complexes of D- and L-isomers of tyrosine, isoleucine, methionine and phenylglycine. Org Biomol Chem. 2004;2(23):3470-3475. doi:10.1039/b409482d.
Peluso P, Chankvetadze B. Recognition in the domain of molecular chirality: from noncovalent interactions to separation of enantiomers. Chem Rev. 2022;122(16):13235-41300. doi:10.1021/acs.chemrev.1c00846.
De Gauquier P, Vanommeslaeghe K, Vander HY, Mangelings D. Modelling approaches for chiral chromatography on polysaccharide-based and macrocyclic antibiotic chiral selectors: a review. Anal Chim Acta. 2022;1198:338861. doi:10.1016/j.aca.2021.338861.
Lingenfelter DS, Helgeson RC, Cram DJ. Host-guest complexation. 23. High chiral recognition of amino acid and ester guests by hosts containing one chiral element. J Org Chem. 1981;46(2):393-406. doi:10.1021/jo00315a033.
Lämmerhofer M. Chiral recognition by enantioselective liquid chromatography: mechanisms and modern chiral stationary phases. J Chromatogr A. 2010;1217(6):814-856. doi:10.1016/j.chroma.2009.10.022.
Weinstein SE, Vining MS, Wenzel TJ. Lanthanide-crown ether mixtures as chiral NMR shift reagents for amino acid esters, amines and amino alcohols. Magn Reson Chem. 1997;35(4):273-280. doi:10.1002/(SICI)1097-458X(199704)35:4%3C273::AID-OMR73%3E3.0.CO;2-C.
معلومات مُعتمدة: IG-2022-08 Latvian Institute of Organic Synthesis; IG-2021-05 Latvian Institute of Organic Synthesis
فهرسة مساهمة: Keywords: amino acids; chiral recognition; crown ether CSPs; enantioselectivity; tetrapeptide
المشرفين على المادة: 0 ((3,3'-diphenyl-1,1'-binaphthyl)-20-crown-6)
0 (Crown Ethers)
02N30CW3X0 (kyotorphin)
42HK56048U (Tyrosine)
47E5O17Y3R (Phenylalanine)
تواريخ الأحداث: Date Created: 20230913 Date Completed: 20240101 Latest Revision: 20240101
رمز التحديث: 20240102
DOI: 10.1002/chir.23619
PMID: 37700546
قاعدة البيانات: MEDLINE
الوصف
تدمد:1520-636X
DOI:10.1002/chir.23619