دورية أكاديمية

Tropical Atlantic multidecadal variability is dominated by external forcing.

التفاصيل البيبلوغرافية
العنوان: Tropical Atlantic multidecadal variability is dominated by external forcing.
المؤلفون: He C; Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, Miami, FL, USA. cxh1079@miami.edu., Clement AC; Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, Miami, FL, USA., Kramer SM; Department of Atmospheric and Oceanic Sciences, University of Colorado, Boulder, CO, USA., Cane MA; Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY, USA., Klavans JM; Department of Atmospheric and Oceanic Sciences, University of Colorado, Boulder, CO, USA., Fenske TM; Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, Miami, FL, USA., Murphy LN; Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, Miami, FL, USA.
المصدر: Nature [Nature] 2023 Oct; Vol. 622 (7983), pp. 521-527. Date of Electronic Publication: 2023 Sep 13.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Nature Publishing Group Country of Publication: England NLM ID: 0410462 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1476-4687 (Electronic) Linking ISSN: 00280836 NLM ISO Abbreviation: Nature Subsets: MEDLINE
أسماء مطبوعة: Publication: Basingstoke : Nature Publishing Group
Original Publication: London, Macmillan Journals ltd.
مواضيع طبية MeSH: Models, Theoretical* , Temperature* , Tropical Climate*, Aerosols ; Air Movements ; Atlantic Ocean ; Cyclonic Storms ; History, 20th Century ; Human Activities ; Rain ; Uncertainty ; Volcanic Eruptions
مستخلص: The tropical Atlantic climate is characterized by prominent and correlated multidecadal variability in Atlantic sea surface temperatures (SSTs), Sahel rainfall and hurricane activity 1-4 . Owing to uncertainties in both the models and the observations, the origin of the physical relationships among these systems has remained controversial 3-7 . Here we show that the cross-equatorial gradient in tropical Atlantic SSTs-largely driven by radiative perturbations associated with anthropogenic emissions and volcanic aerosols since 1950 3,7 -is a key determinant of Atlantic hurricane formation and Sahel rainfall. The relationship is obscured in a large ensemble of CMIP6 Earth system models, because the models overestimate long-term trends for warming in the Northern Hemisphere relative to the Southern Hemisphere from around 1950 as well as associated changes in atmospheric circulation and rainfall. When the overestimated trends are removed, correlations between SSTs and Atlantic hurricane formation and Sahel rainfall emerge as a response to radiative forcing, especially since 1950 when anthropogenic aerosol forcing has been high. Our findings establish that the tropical Atlantic SST gradient is a stronger determinant of tropical impacts than SSTs across the entire North Atlantic, because the gradient is more physically connected to tropical impacts via local atmospheric circulations 8 . Our findings highlight that Atlantic hurricane activity and Sahel rainfall variations can be predicted from radiative forcing driven by anthropogenic emissions and volcanism, but firmer predictions are limited by the signal-to-noise paradox 9-11 and uncertainty in future climate forcings.
(© 2023. The Author(s), under exclusive licence to Springer Nature Limited.)
References: Goldenberg, S. B., Landsea, C. W., Mestas-Nuñez, A. M. & Gray, W. M. The recent increase in Atlantic hurricane activity: causes and implications. Science 293, 474–479 (2001). (PMID: 1146391110.1126/science.1060040)
Gray, W. M. Strong association between West African rainfall and U.S. landfall of intense hurricanes. Science 249, 1251–1256 (1990). (PMID: 1783553810.1126/science.249.4974.1251)
Dunstone, N. J., Smith, D. M., Booth, B. B. B., Hermanson, L. & Eade, R. Anthropogenic aerosol forcing of Atlantic tropical storms. Nat. Geosci. 6, 534–539 (2013). (PMID: 10.1038/ngeo1854)
Yan, X., Zhang, R. & Knutson, T. R. The role of Atlantic overturning circulation in the recent decline of Atlantic major hurricane frequency. Nat. Commun. 8, 1695 (2017). (PMID: 29167451570010510.1038/s41467-017-01377-8)
Zhang, R. et al. A review of the role of the Atlantic meridional overturning circulation in Atlantic multidecadal variability and associated climate impacts. Rev. Geophys. 57, 316–375 (2019). (PMID: 10.1029/2019RG000644)
Clement, A. et al. The Atlantic multidecadal oscillation without a role for ocean circulation. Science 350, 320–324 (2015). (PMID: 2647290810.1126/science.aab3980)
Booth, B. B., Dunstone, N. J., Halloran, P. R., Andrews, T. & Bellouin, N. Aerosols implicated as a prime driver of twentieth-century North Atlantic climate variability. Nature 484, 228–232 (2012). (PMID: 2249862810.1038/nature10946)
Gill, A. E. Some simple solutions for heat-induced tropical circulation. Q. J. R. Meteorol. Soc. 106, 447–462 (1980). (PMID: 10.1002/qj.49710644905)
Smith, D. M. et al. North Atlantic climate far more predictable than models imply. Nature 583, 796–800 (2020). (PMID: 3272823710.1038/s41586-020-2525-0)
Scaife, A. A. & Smith, D. A signal-to-noise paradox in climate science. npj Clim. Atmos. Sci. 1, 28 (2018). (PMID: 10.1038/s41612-018-0038-4)
Klavans, J. M., Cane, M .A., Clement, A. C. & Murphy, L. N. NAO predictability from external forcing in the late 20th century. npj Clim. Atmos. Sci. 4, 22 (2021). (PMID: 10.1038/s41612-021-00177-8)
Folland, C. K., Palmer, T. N. & Parker, D. E. Sahel rainfall and worldwide sea temperatures, 1901–85. Nature 320, 602–607 (1986). (PMID: 10.1038/320602a0)
Sutton, R. T. & Hodson, D. L. Atlantic Ocean forcing of North American and European summer climate. Science 309, 115–118 (2005). (PMID: 1599455210.1126/science.1109496)
Chiang, J. C. H. & Friedman, A. R. Extratropical cooling, interhemispheric thermal gradients, and tropical climate change. Annu. Rev. Earth Planet. Sci. 40, 383–412 (2012). (PMID: 10.1146/annurev-earth-042711-105545)
Kang, S. M., Held, I. M., Frierson, D. M. W. & Zhao, M. The response of the ITCZ to extratropical thermal forcing: idealized slab-ocean experiments with a GCM. J. Clim. 21, 3521–3532 (2008). (PMID: 10.1175/2007JCLI2146.1)
Hu, S. & Fedorov, A. V. Indian Ocean warming can strengthen the Atlantic meridional overturning circulation. Nat. Clim. Change 9, 747–751 (2019). (PMID: 10.1038/s41558-019-0566-x)
Wills, R. C. J., Dong, Y., Proistosecu, C., Armour, K. C. & Battisti, D. S. Systematic climate model biases in the large-scale patterns of recent sea-surface temperature and sea-level pressure change. Geophys. Res. Lett. 49, e2022GL100011 (2022). (PMID: 10.1029/2022GL100011)
Deser, C. et al. Isolating the evolving contributions of anthropogenic aerosols and greenhouse gases: a new CESM1 Large Ensemble Community resource. J. Clim. 33, 7835–7858 (2020). (PMID: 10.1175/JCLI-D-20-0123.1)
Wang, C., Soden, B. J., Yang, W. & Vecchi, G. A. Compensation between cloud feedback and aerosol-cloud interaction in CMIP6 models. Geophys. Res. Lett. 48, e2020GL091024 (2021). (PMID: 10.1029/2020GL091024)
Ting, M., Kossin, J. P., Camargo, S. J. & Li, C. Past and future hurricane intensity change along the U.S. East Coast. Sci. Rep. 9, 7795 (2019). (PMID: 31127128653456010.1038/s41598-019-44252-w)
Ting, M., Kushnir, Y. & Li, C. North Atlantic multidecadal SST oscillation: external forcing versus internal variability. J. Mar. Syst. 133, 27–38 (2014). (PMID: 10.1016/j.jmarsys.2013.07.006)
Si, D., Hu, A., Jiang, D. & Lang, X. Atmospheric teleconnection associated with the Atlantic multidecadal variability in summer: assessment of the CESM1 model. Clim. Dyn. 60, 1043–1060 (2023). (PMID: 10.1007/s00382-022-06331-z)
Pielke, R. A. Jr & Landsea, C. N. La Niña, El Niño, and Atlantic hurricane damages in the United States. Bull. Am. Meteorol. Soc. 80, 2027–2034 (1999). (PMID: 10.1175/1520-0477(1999)080<2027:LNAENO>2.0.CO;2)
Li, W., Li, L. & Deng, Y. Impact of the interdecadal Pacific oscillation on tropical cyclone activity in the North Atlantic and eastern North Pacific. Sci. Rep. 5, 12358 (2015). (PMID: 26205462464844910.1038/srep12358)
Smith, D. M. et al. Skilful multi-year predictions of Atlantic hurricane frequency. Nat. Geosci. 3, 846–849 (2010). (PMID: 10.1038/ngeo1004)
Ackerley, D. et al. Sensitivity of twentieth-century Sahel rainfall to sulfate aerosol and CO 2 forcing. J. Clim. 24, 4999–5014 (2011). (PMID: 10.1175/JCLI-D-11-00019.1)
Vimont, D. J. & Kossin, J. P. The Atlantic meridional mode and hurricane activity. Geophys. Res. Lett. https://doi.org/10.1029/2007GL029683 (2007). (PMID: 10.1029/2007GL029683)
Zhang, S., Stier, P., Dagan, G. & Wang, M. Anthropogenic aerosols modulated 20th-century Sahel rainfall variability via their impacts on North Atlantic sea surface temperature. Geophys. Res. Lett. 49, e2021GL095629 (2022). (PMID: 3586507910.1029/2021GL095629)
Sutton, R. T. & Hodson, D. L. R. Climate response to basin-scale warming and cooling of the North Atlantic Ocean. J. Clim. 20, 891–907 (2007). (PMID: 10.1175/JCLI4038.1)
Dunstone, N. J., Smith, D. M. & Eade, R. Multi-year predictability of the tropical Atlantic atmosphere driven by the high latitude North Atlantic Ocean. Geophys. Res. Lett. https://doi.org/10.1029/2011GL047949 (2011). (PMID: 10.1029/2011GL047949)
Bollasina, M. A., Ming, Y. & Ramaswamy, V. Anthropogenic aerosols and the weakening of the South Asian summer monsoon. Science 334, 502–505 (2011). (PMID: 2196052910.1126/science.1204994)
Qin, M., Dai, A. & Hua, W. Aerosol-forced multidecadal variations across all ocean basins in models and observations since 1920. Sci. Adv. 6, eabb0425 (2020). (PMID: 32832635743931210.1126/sciadv.abb0425)
Ruprich-Robert, Y. et al. Assessing the climate impacts of the observed Atlantic multidecadal variability using the GFDL CM2. 1 and NCAR CESM1 global coupled models. J. Clim. 30, 2785–2810 (2017). (PMID: 10.1175/JCLI-D-16-0127.1)
Murphy, L. N., Klavans, J. M., Clement, A. C. & Cane, M. A. Investigating the roles of external forcing and ocean circulation on the Atlantic multidecadal SST variability in a large ensemble climate model hierarchy. J. Clim. 34, 4835–4849 (2021). (PMID: 10.1175/JCLI-D-20-0167.1)
Scaife, A. A. et al. Does increased atmospheric resolution improve seasonal climate predictions. Atmos. Sci. Lett. 20, e922 (2019). (PMID: 10.1002/asl.922)
Chan, D., Kent, E. C., Berry, D. I. & Huybers, P. Correcting datasets leads to more homogeneous early-twentieth-century sea surface warming. Nature 571, 393–397 (2019). (PMID: 3131619510.1038/s41586-019-1349-2)
Berntell, E., Zhang, Q., Chafik, L. & Körnich, H. Representation of multidecadal Sahel rainfall variability in 20th century reanalyses. Sci. Rep. 8, 10937 (2018). (PMID: 30026485605336010.1038/s41598-018-29217-9)
Fyfe, J. C., Kharin, V. V., Santer, B. D., Cole, J. N. S. & Gillett, N. P. Significant impact of forcing uncertainty in a large ensemble of climate model simulations. Proc. Natl Acad. Sci. USA 118, e2016549118 (2021). (PMID: 34074753820201810.1073/pnas.2016549118)
Knight, J. R., Folland, C. K. & Scaife, A. A. Climate impacts of the Atlantic multidecadal oscillation. Geophys. Res. Lett. https://doi.org/10.1029/2006GL026242 (2006). (PMID: 10.1029/2006GL026242)
Martin, E. R., Thorncroft, C. & Booth, B. B. B. The multidecadal Atlantic SST—Sahel rainfall teleconnection in CMIP5 simulations. J. Clim. 27, 784–806 (2014). (PMID: 10.1175/JCLI-D-13-00242.1)
Wills, R. C. J., Armour, K. C., Battisti, D. S. & Hartmann, D. L. Ocean–atmosphere dynamical coupling fundamental to the Atlantic multidecadal oscillation. J. Clim. 32, 251–272 (2019). (PMID: 10.1175/JCLI-D-18-0269.1)
Ba, J. et al. A multi-model comparison of Atlantic multidecadal variability. Clim. Dyn. 43, 2333–2348 (2014). (PMID: 10.1007/s00382-014-2056-1)
Yan, X., Zhang, R. & Knutson, T. R. Underestimated AMOC variability and implications for AMV and predictability in CMIP models. Geophys. Res. Lett. 45, 4319–4328 (2018). (PMID: 10.1029/2018GL077378)
Zhang, L. & Wang, C. Multidecadal North Atlantic sea surface temperature and Atlantic meridional overturning circulation variability in CMIP5 historical simulations. J. Geophys. Res. Oceans 118, 5772–5791 (2013). (PMID: 10.1002/jgrc.20390)
Klavans, J. M., Clement, A. C. & Cane, M. A. Variable external forcing obscures the weak relationship between the NAO and North Atlantic multidecadal SST variability. J. Clim. 32, 3847–3864 (2019). (PMID: 10.1175/JCLI-D-18-0409.1)
Giannini, A. & Kaplan, A. The role of aerosols and greenhouse gases in Sahel drought and recovery. Clim. Change 152, 449–466 (2019). (PMID: 3100731710.1007/s10584-018-2341-9)
Herman, R. J., Giannini, A., Biasutti, M. & Kushnir, Y. The effects of anthropogenic and volcanic aerosols and greenhouse gases on twentieth century Sahel precipitation. Sci. Rep. 10, 12203 (2020). (PMID: 32699339737625410.1038/s41598-020-68356-w)
Klavans, J. M., Clement, A. C., Cane, M. A., & Murphy, L. N. The evolving role of external forcing in North Atlantic SST variability over the last millennium. J. Clim. 35, 2741–2754 (2022). (PMID: 10.1175/JCLI-D-21-0338.1)
Watanabe, M. & Tatebe, H. Reconciling roles of sulphate aerosol forcing and internal variability in Atlantic multidecadal climate changes. Clim. Dyn. 53, 4651–4665 (2019). (PMID: 10.1007/s00382-019-04811-3)
Zhang, R. et al. Have aerosols caused the observed Atlantic multidecadal variability. J. Atmos. Sci. 70, 1135–1144 (2013). (PMID: 10.1175/JAS-D-12-0331.1)
Enfield, D. B., Mestas‐Nuñez, A. M. & Trimble, P. J. The Atlantic multidecadal oscillation and its relation to rainfall and river flows in the continental U.S. Geophys. Res. Lett. https://doi.org/10.1029/2000GL012745 (2001). (PMID: 10.1029/2000GL012745)
Huang, B. et al. Extended Reconstructed Sea Surface Temperature, version 5 (ERSSTv5): upgrades, validations, and intercomparisons. J. Clim. 30, 8179–8205 (2017). (PMID: 10.1175/JCLI-D-16-0836.1)
Hirahara, S., Ishii, M. & Fukuda, Y. Centennial-scale sea surface temperature analysis and its uncertainty. J. Clim. 27, 57–75 (2014). (PMID: 10.1175/JCLI-D-12-00837.1)
Rayner, N. A. et al. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res. Atmos. https://doi.org/10.1029/2002JD002670 (2003). (PMID: 10.1029/2002JD002670)
Harris, I., Osborn, T. J., Jones, P. & Lister, D. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci. Data 7, 109 (2020). (PMID: 32246091712510810.1038/s41597-020-0453-3)
Becker, A. et al. A description of the global land-surface precipitation data products of the Global Precipitation Climatology Centre with sample applications including centennial (trend) analysis from 1901–present. Earth Syst. Sci. Data 5, 71–99 (2013). (PMID: 10.5194/essd-5-71-2013)
Willmott, C. J. & Matsuura, K. Smart interpolation of annually averaged air temperature in the United States. J. Appl. Meteorol. Climatol. 34, 2577–2586 (1995). (PMID: 10.1175/1520-0450(1995)034<2577:SIOAAA>2.0.CO;2)
Kalnay, E. et al. The NCEP/NCAR 40-year reanalysis project. Bull. Am. Meteorol. Soc. 77, 437–471 (1996). (PMID: 10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2)
Slivinski, L. C. et al. Towards a more reliable historical reanalysis: improvements for version 3 of the Twentieth Century Reanalysis system. Q. J. R. Meteorol. Soc. 145, 2876–2908 (2019). (PMID: 10.1002/qj.3598)
Hassan, T., Allen, R. J., Liu, W. & Randles, C. A. Anthropogenic aerosol forcing of the Atlantic meridional overturning circulation and the associated mechanisms in CMIP6 models. Atmos. Chem. Phys. 21, 5821–5846 (2021). (PMID: 10.5194/acp-21-5821-2021)
Menary, M. B. et al. Aerosol‐forced AMOC changes in CMIP6 historical simulations. Geophys. Res. Lett. 47, e2020GL088166 (2020). (PMID: 10.1029/2020GL088166)
Budescu, D. V. Dominance analysis: a new approach to the problem of relative importance of predictors in multiple regression. Psychol. Bull. 114, 542–551 (1993). (PMID: 10.1037/0033-2909.114.3.542)
Johnson, J. W. A heuristic method for estimating the relative weight of predictor variables in multiple regression. Multivar. Behav. Res. 35, 1–19 (2000). (PMID: 10.1207/S15327906MBR3501_1)
Hurrell, J. W. et al. The Community Earth System model: a framework for collaborative research. Bull. Am. Meteorol. Soc. 94, 1339–1360 (2013). (PMID: 10.1175/BAMS-D-12-00121.1)
المشرفين على المادة: 0 (Aerosols)
تواريخ الأحداث: Date Created: 20230913 Date Completed: 20231025 Latest Revision: 20231025
رمز التحديث: 20231215
DOI: 10.1038/s41586-023-06489-4
PMID: 37704729
قاعدة البيانات: MEDLINE
الوصف
تدمد:1476-4687
DOI:10.1038/s41586-023-06489-4