دورية أكاديمية

Effect of silymarin on the relative gene expressions of some inflammatory cytokines in the liver of CCl 4 -intoxicated male rats.

التفاصيل البيبلوغرافية
العنوان: Effect of silymarin on the relative gene expressions of some inflammatory cytokines in the liver of CCl 4 -intoxicated male rats.
المؤلفون: El-Kot SM; Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, 21568, Egypt. sarah.maher_PG@alexu.edu.eg.; Environmental Studies Department, Institute of Graduate Studies and Research, Alexandria University, Alexandria, 21526, Egypt. sarah.maher_PG@alexu.edu.eg., Wanas W; Materials Science Department, Institute of Graduate Studies and Research, Alexandria University, Alexandria, 21526, Egypt., Hafez AM; Environmental Studies Department, Institute of Graduate Studies and Research, Alexandria University, Alexandria, 21526, Egypt., Mahmoud NA; Physiology Department, Faculty of Medicine (Girls), Al-Azhar University, Cairo, 11754, Egypt., Tolba AM; Anatomy Department, Faculty of Medicine (Girls), Al-Azhar University, Cairo, 11754, Egypt., Younis AH; National Institute of Oceanography and Fisheries (NIOF), Alexandria, 21556, Egypt., Sayed GE; Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, 21568, Egypt.; Waste Water Lab, Baheria Water and Waste Company, Baheria, Damanhur, 107, Egypt., Abdelwahab HE; Environmental Studies Department, Institute of Graduate Studies and Research, Alexandria University, Alexandria, 21526, Egypt.; Chemistry Department, Faculty of Science, Alexandria University, Alexandria, 21568, Egypt.
المصدر: Scientific reports [Sci Rep] 2023 Sep 14; Vol. 13 (1), pp. 15245. Date of Electronic Publication: 2023 Sep 14.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Nature Publishing Group Country of Publication: England NLM ID: 101563288 Publication Model: Electronic Cited Medium: Internet ISSN: 2045-2322 (Electronic) Linking ISSN: 20452322 NLM ISO Abbreviation: Sci Rep Subsets: MEDLINE
أسماء مطبوعة: Original Publication: London : Nature Publishing Group, copyright 2011-
مواضيع طبية MeSH: Cytokines* , Corn Oil*, Male ; Animals ; Rats ; Rats, Wistar ; Xenobiotics ; Liver ; Interleukin-6 ; Cyclooxygenase 2/genetics ; NF-kappa B ; Inflammation/chemically induced ; Inflammation/genetics
مستخلص: The intensive exposure of the liver cells to any type of noxae, such as viruses, drugs, alcohols, and xenobiotics could induce hepatic inflammation through the upregulation of gene expression of several fibrotic and inflammatory mediators. So, our study assessed the role of silymarin on the inflammatory response induced by carbon tetrachloride (CCl 4 ) as an example of xenobiotics on liver tissues in male rats. Forty-eight Wister male rats (weight: 130 ± 10) were housed for 14 days and then divided randomly into six groups: control, SLY: rats received only silymarin orally for 12 weeks (daily), CO: rats were injected with corn oil for 8 weeks (3 times weekly), CCl 4 : rats were injected with CCl 4 solubilized in corn oil for 8 weeks (day by day), Treated: rats received silymarin for 4 weeks after CCl 4 injection, Protected: rats received silymarin for 4 weeks before and 8 weeks during CCl 4 injection. When the treatment period for the rats was over, they underwent scarification after anesthesia. Then, the sera were extracted from the collected blood for the determination of irisin levels, liver functions, and lipid profiles. Liver tissues were separated for the histopathological examinations, the determination of oxidative stress (OS) parameters content, and the relative gene expression of inflammatory cytokines; nuclear factor kappa (NF)-κB, tumor necrosis factor-alpha (TNF-α), interleukin (IL)-6, cyclooxygenase (COX)-2, and transforming growth factor beta (TGF-β). The findings showed that silymarin reduced liver inflammation by overcoming the OS process and inflammatory cytokines production which was stimulated by CCl 4 . These results were confirmed by histopathology of liver tissues.
(© 2023. Springer Nature Limited.)
References: Trefts, E., Gannon, M. A. & Wasserman, D. H. The liver. Curr. Biol. 27, R1147–R1151 (2017). (PMID: 29112863589711810.1016/j.cub.2017.09.019)
Vishwakarma, S. K. et al. Intraperitoneal transplantation of bioengineered humanized liver grafts supports failing liver in acute condition. Mater. Sci. Eng., C 98, 861–873 (2019). (PMID: 10.1016/j.msec.2019.01.045)
Irshad, M., Gupta, P. & Irshad, K. Immunopathogenesis of liver injury during hepatitis C virus infection. Viral Immunol. 32, 112–120 (2019). (PMID: 3081723610.1089/vim.2018.0124)
Seitz, H. K. et al. Alcoholic liver disease. Nat. Rev. Dis. Prim. 4, 1–22 (2018).
Shin, D.-S., Kim, K. W., Chung, H. Y., Yoon, S. & Moon, J.-O. Effect of sinapic acid against carbon tetrachloride-induced acute hepatic injury in rats. Arch. Pharmacal Res. 36, 626–633 (2013). (PMID: 10.1007/s12272-013-0050-5)
Liu, Y. et al. Animal models of chronic liver diseases. Am. J. Physiol. Gastrointest. Liver Physiol. 304, G449–G468 (2013). (PMID: 2327561310.1152/ajpgi.00199.2012)
Zhu, W. et al. Effects of xenogeneic adipose-derived stem cell transplantation on acute-on-chronic liver failure. Hepatobiliary Pancreat. Dis. Int. 12, 60–67 (2013). (PMID: 2339280010.1016/S1499-3872(13)60007-7)
Dong, S. et al. Mechanisms of CCl4-induced liver fibrosis with combined transcriptomic and proteomic analysis. J. Toxicol. Sci. 41, 561–572 (2016). (PMID: 2745203910.2131/jts.41.561)
Teschke, R. Liver injury by carbon tetrachloride intoxication in 16 patients treated with forced ventilation to accelerate toxin removal via the lungs: A clinical report. Toxics 6, 25 (2018). (PMID: 29702608602734610.3390/toxics6020025)
Weber, L. W., Boll, M. & Stampfl, A. Hepatotoxicity and mechanism of action of haloalkanes: Carbon tetrachloride as a toxicological model. Crit. Rev. Toxicol. 33, 105–136 (2003). (PMID: 1270861210.1080/713611034)
Yang, F. et al. Inhibitions of NF-κB and TNF-α result in differential effects in rats with acute on chronic liver failure induced by d-gal and LPS. Inflammation 37, 848–857 (2014). (PMID: 2438524110.1007/s10753-013-9805-x)
Boström, P. et al. A PGC1-α-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature 481, 463–468 (2012). (PMID: 22237023352209810.1038/nature10777)
Aydin, S. et al. A comprehensive immunohistochemical examination of the distribution of the fat-burning protein irisin in biological tissues. Peptides 61, 130–136 (2014). (PMID: 2526180010.1016/j.peptides.2014.09.014)
Jiang, S., Piao, L., Ma, E. B., Ha, H. & Huh, J. Y. Associations of circulating irisin with FNDC5 expression in fat and muscle in type 1 and type 2 diabetic mice. Biomolecules 11, 322 (2021). (PMID: 33672565792405310.3390/biom11020322)
Amengual, J. et al. Retinoic acid increases fatty acid oxidation and irisin expression in skeletal muscle cells and impacts irisin in vivo. Cell. Physiol. Biochem. 46, 187–202 (2018). (PMID: 2958729110.1159/000488422)
Tang, H. et al. Irisin inhibits hepatic cholesterol synthesis via AMPK-SREBP2 signaling. EBioMedicine 6, 139–148 (2016). (PMID: 27211556485675110.1016/j.ebiom.2016.02.041)
Zhao, J., Qiao, L., Dong, J. & Wu, R. Antioxidant effects of irisin in liver diseases: Mechanistic insights. Oxid. Med. Cell. Longev. https://doi.org/10.1155/2022/3563518 (2022). (PMID: 10.1155/2022/3563518366200849822757)
Rahmani, A. H. & Aly, S. M. Nigella sativa and its active constituents thymoquinone shows pivotal role in the diseases prevention and treatment. Asian J. Pharm. Clin. Res. 8, 48–53 (2015).
Vargas-Mendoza, N. et al. Hepatoprotective effect of silymarin. World J. Hepatol. 6, 144 (2014). (PMID: 24672644395911510.4254/wjh.v6.i3.144)
Burgess, C. A. Silybum marianum (milk thistle). (2003).
Biedermann, D., Vavříková, E., Cvak, L. & Křen, V. Chemistry of silybin. Nat. Prod. Rep. 31, 1138–1157 (2014). (PMID: 2497726010.1039/C3NP70122K)
Baradaran, A., Samadi, F., Ramezanpour, S. & Yousefdoust, S. Hepatoprotective effects of silymarin on CCl4-induced hepatic damage in broiler chickens model. Toxicol. Rep. 6, 788–794 (2019). (PMID: 31440455669880010.1016/j.toxrep.2019.07.011)
Shaban, N. Z. et al. Prophylactic and curative effects of Carica papaya Linn. Pulp extract against carbon tetrachloride-induced hepatotoxicity in male rats. Environ. Sci. Pollut. Res. 30(10), 27815–27832 (2022). (PMID: 10.1007/s11356-022-24083-5)
Shaban, N. Z., El-Kot, S. M., Awad, O. M., Hafez, A. M. & Fouad, G. M. The antioxidant and anti-inflammatory effects of Carica Papaya Linn. Seeds extract on CCl4-induced liver injury in male rats. BMC Complement. Med. Ther. 21, 1–15 (2021). (PMID: 10.1186/s12906-021-03479-9)
Abdel-Moneim, A. M., Al-Kahtani, M. A., El-Kersh, M. A. & Al-Omair, M. A. Free radical-scavenging, anti-inflammatory/anti-fibrotic and hepatoprotective actions of taurine and silymarin against CCl4 induced rat liver damage. PLoS ONE 10, e0144509 (2015). (PMID: 26659465467669510.1371/journal.pone.0144509)
Karabulut, A. et al. Nutri-protection and mediterranean diet: Bitter apricot kernel and amygdalin treatment effects on a battery of oxidative stress and apoptosis biomarkers. J. Plant Physiol. Pathol. 2(3), 2 (2014).
Slaoui, M. & Fiette, L. Drug Safety Evaluation 69–82 (Springer, 2011). (PMID: 10.1007/978-1-60761-849-2_4)
Ohkawa, H., Ohishi, N. & Yagi, K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem. 95, 351–358 (1979). (PMID: 3681010.1016/0003-2697(79)90738-3)
Marcocci, L., Maguire, J. J., Droylefaix, M. T. & Packer, L. The nitric oxide-scavenging properties of Ginkgo biloba extract EGb 761. Biochem. Biophys. Res. Commun. 201, 748–755 (1994). (PMID: 800301110.1006/bbrc.1994.1764)
Ellman, G. L. Tissue sulfhydryl groups. Arch. Biochem. Biophys. 82, 70–77 (1959). (PMID: 1365064010.1016/0003-9861(59)90090-6)
Marklund, S. & Marklund, G. Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur. J. Biochem. 47, 469–474 (1974). (PMID: 421565410.1111/j.1432-1033.1974.tb03714.x)
Rotruck, J. T. et al. Selenium: Biochemical role as a component of glutathione peroxidase. Science 179, 588–590 (1973). (PMID: 468646610.1126/science.179.4073.588)
Goldberg, D. Glutathione reductase. Methods Enzym. Anal. 3, 258–265 (1984).
Habig, W. H., Pabst, M. J. & Jakoby, W. B. Glutathione S-transferases the first enzymatic step in mercapturic acid formation. J. Biol. Chem. 249, 7130–7139 (1974). (PMID: 443630010.1016/S0021-9258(19)42083-8)
Classics Lowry, O., Rosebrough, N., Farr, A. & Randall, R. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193, 265–275 (1951). (PMID: 10.1016/S0021-9258(19)52451-6)
Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data usingreal-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods Enzym. Anal. 25, 402 (2001). (PMID: 10.1006/meth.2001.1262)
Zaky, A., Mohammad, B., Moftah, M., Kandeel, K. M. & Bassiouny, A. R. Apurinic/apyrimidinic endonuclease 1 is a key modulator of aluminum-induced neuroinflammation. BMC Neurosci. 14, 26 (2013). (PMID: 23497276361685710.1186/1471-2202-14-26)
Ergun, S. et al. Influence of dietary oils on liver and blood lipid peroxidation. Saudi Med. J. 26, 442–446 (2005). (PMID: 15806216)
Dauqan, E., Abdullah, A. & Sani, H. A. Lipid peroxidation in rat liver using different vegetable oils. Malay. J. Anal. Sci 17, 300–309 (2013).
Hwang, J. Diets with corn oil and/or low protein increase acute acetaminophen hepatotoxicity compared to diets with beef tallow in a rat model. Nurs. Res. Pract. 3, 95–101 (2009).
Shaban, N. Z., El-Kersh, M. A., El-Rashidy, F. H. & Habashy, N. H. Protective role of Punica granatum (pomegranate) peel and seed oil extracts on diethylnitrosamine and phenobarbital-induced hepatic injury in male rats. Food Chem. 141, 1587–1596 (2013). (PMID: 2387086410.1016/j.foodchem.2013.04.134)
Kang, H. & Koppula, S. Hepatoprotective effect of Houttuynia cordata thunb extract against carbon tetrachloride-induced hepatic damage in mice. Indian J. Pharm. Sci. 76, 267 (2014). (PMID: 252849234171862)
Abdelghffar, E. A., El-Nashar, H. A., Fayez, S., Obaid, W. A. & Eldahshan, O. A. Ameliorative effect of oregano (Origanum vulgare) versus silymarin in experimentally induced hepatic encephalopathy. Sci. Rep. 12, 17854 (2022). (PMID: 36284120959643710.1038/s41598-022-20412-3)
Fang, H.-L. & Lin, W.-C. Corn oil enhancing hepatic lipid peroxidation induced by CCl4 does not aggravate liver fibrosis in rats. Food Chem. Toxicol. 46, 2267–2273 (2008). (PMID: 1842032610.1016/j.fct.2008.03.005)
Chen, C. COX-2’s new role in inflammation. Nat. Chem. Biol. 6, 401–402 (2010). (PMID: 2047974910.1038/nchembio.375)
Biernacki, M. et al. Oxidative stress and its consequences in the blood of rats irradiated with UV: Protective effect of cannabidiol. Antioxidants 10, 821 (2021). (PMID: 34063802822400210.3390/antiox10060821)
Rusyn, I. et al. Corn oil rapidly activates nuclear factor-κB in hepatic Kupffer cells by oxidant-dependent mechanisms. Carcinogenesis 20, 2095–2100 (1999). (PMID: 1054541110.1093/carcin/20.11.2095)
Germoush, M. O. et al. Umbelliferone prevents oxidative stress, inflammation and hematological alterations, and modulates glutamate-nitric oxide-cGMP signaling in hyperammonemic rats. Biomed. Pharmacother. 102, 392–402 (2018). (PMID: 2957361810.1016/j.biopha.2018.03.104)
Munakarmi, S., Chand, L., Shin, H. B., Jang, K. Y. & Jeong, Y. J. Indole-3-carbinol derivative DIM mitigates carbon tetrachloride-induced acute liver injury in mice by inhibiting inflammatory response, apoptosis and regulating oxidative stress. Int. J. Mol. Sci. 21, 2048 (2020). (PMID: 32192079713934510.3390/ijms21062048)
Korhonen, R., Lahti, A., Kankaanranta, H. & Moilanen, E. Nitric oxide production and signaling in inflammation. Curr. Drug Targ.-Inflamm. Allergy 4, 471–479 (2005). (PMID: 10.2174/1568010054526359)
Xiankui Li, L. W. & Cai, C. Effects of exogenous thymosin β4 on carbon tetrachloride-induced liver injury and fibrosis. Sci. Rep. 7, 1–13 (2017).
Treadwell, T. et al. The regenerative peptide thymosin β4 accelerates the rate of dermal healing in preclinical animal models and in patients. Ann. N. Y. Acad. Sci. 1270, 37–44 (2012). (PMID: 2305081510.1111/j.1749-6632.2012.06717.x)
Gillessen, A. & Schmidt, H.H.-J. Silymarin as supportive treatment in liver diseases: A narrative review. Adv. Ther. 37, 1279–1301 (2020). (PMID: 32065376714075810.1007/s12325-020-01251-y)
Nasri, H. Silymarin and its properties; a nephrology viewpoint. J. Renal Endocrinol. 1, e09–e09 (2015).
Ajay, K., Deepa, I., Purnima, A. & Neeraj, V. Silymarin: A comprehensive review. Pharmacogn. Rev. 3, 126–134 (2009).
Muriel, P. & Mourelle, M. Prevention by silymarin of membrane alterations in acute CCl4 liver damage. J. Appl. Toxicol. 10, 275–279 (1990). (PMID: 197525810.1002/jat.2550100408)
Valenzuela, A. & Garrido, A. R. Biochemical bases of the pharmacological action of the flavonoid silymarin and of its structural isomer silibinin. Biol. Res. 27, 105–112 (1994). (PMID: 8640239)
Mereish, K. A., Bunner, D. L., Ragland, D. R. & Creasia, D. A. Protection against microcystin-L R-induced hepatotoxicity y silymarin: Biochemistry, histopathology and lethality. Pharmacol. Res. 8, 273–277 (1991). (PMID: 10.1023/A:1015868809990)
Elbakry, M. A., El Rabey, H. A., Elremaly, W., Sakran, M. I. & Almutairi, F. M. The methanolic extract of Moringa oleifera attenuates CCl4 induced hepatonephro toxicity in the male rat. Biomed. Res. 30, 23–31 (2019). (PMID: 10.35841/biomedicalresearch.30-18-1056)
El Rabey, H. A. et al. Green coffee methanolic extract and silymarin protect against CCl4-induced hepatotoxicity in albino male rats. BMC Complement. Med. Therap. 21, 1–11 (2021). (PMID: 10.1186/s12906-020-03186-x)
Bi, J. et al. Irisin improves autophagy of aged hepatocytes via increasing telomerase activity in liver injury. Oxid. Med. Cell. Longev. https://doi.org/10.1155/2020/6946037 (2020). (PMID: 10.1155/2020/6946037319984406977337)
Kheiripour, N. et al. Hepatoprotective effects of silymarin on liver injury via irisin upregulation and oxidative stress reduction in rats with type 2 diabetes. Iran. J. Med. Sci. 44, 108 (2019). (PMID: 30936597)
Mazur-Bialy, A. I. & Pocheć, E. The time-course of antioxidant irisin activity: role of the Nrf2/HO-1/HMGB1 axis. Antioxidants 10, 88 (2021). (PMID: 33440644782744810.3390/antiox10010088)
Wu, F. et al. Aerobic exercise alleviates oxidative stress-induced apoptosis in kidneys of myocardial infarction mice by inhibiting ALCAT1 and activating FNDC5/Irisin signaling pathway. Free Radical. Biol. Med. 158, 171–180 (2020). (PMID: 10.1016/j.freeradbiomed.2020.06.038)
Karimi, R. et al. Silymarin reduces retinal microvascular damage in streptozotocin-induced diabetic rats. Sci. Rep. 12, 15872 (2022). (PMID: 36151457950812910.1038/s41598-022-20297-2)
Li, D.-J. et al. NAD+-boosting therapy alleviates nonalcoholic fatty liver disease via stimulating a novel exerkine Fndc5/irisin. Theranostics 11, 4381 (2021). (PMID: 33754067797744710.7150/thno.53652)
Eser, N. et al. Ameliorative effects of garlic oil on FNDC5 and irisin sensitivity in liver of streptozotocin-induced diabetic rats. J. Pharm. Pharmacol. 73, 824–834 (2021). (PMID: 3373940910.1093/jpp/rgab023)
المشرفين على المادة: 0 (Cytokines)
8001-30-7 (Corn Oil)
0 (Xenobiotics)
0 (Interleukin-6)
EC 1.14.99.1 (Cyclooxygenase 2)
0 (NF-kappa B)
تواريخ الأحداث: Date Created: 20230914 Date Completed: 20230918 Latest Revision: 20231120
رمز التحديث: 20240628
مُعرف محوري في PubMed: PMC10502111
DOI: 10.1038/s41598-023-42250-7
PMID: 37710007
قاعدة البيانات: MEDLINE
الوصف
تدمد:2045-2322
DOI:10.1038/s41598-023-42250-7