دورية أكاديمية

Short-term function and immune-protection of microencapsulated adult porcine islets with alginate incorporating CXCL12 in healthy and diabetic non-human primates without systemic immune suppression: A pilot study.

التفاصيل البيبلوغرافية
العنوان: Short-term function and immune-protection of microencapsulated adult porcine islets with alginate incorporating CXCL12 in healthy and diabetic non-human primates without systemic immune suppression: A pilot study.
المؤلفون: Sremac M; Vaccine and Immunotherapy Center, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA., Luo H; Division of Transplant Surgery and Center of Transplantation Sciences, Massachusetts General Hospital, Boston, Massachusetts, USA.; Department of General Surgery, General Hospital of Western Theater Command, Chengdu, China., Deng H; Division of Transplant Surgery and Center of Transplantation Sciences, Massachusetts General Hospital, Boston, Massachusetts, USA., Parr MFE; Vaccine and Immunotherapy Center, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA., Hutcheson J; ViCapsys, Inc., Athens, Georgia, USA., Verde PS; Vaccine and Immunotherapy Center, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA., Alagpulinsa DA; Vaccine and Immunotherapy Center, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA., Kitzmann JM; Department of Surgery, Institute for Cellular Transplantation, University of Arizona, Tucson, Arizona, USA., Papas KK; Department of Surgery, Institute for Cellular Transplantation, University of Arizona, Tucson, Arizona, USA., Brauns T; Vaccine and Immunotherapy Center, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA., Markmann JF; Division of Transplant Surgery and Center of Transplantation Sciences, Massachusetts General Hospital, Boston, Massachusetts, USA., Lei J; Division of Transplant Surgery and Center of Transplantation Sciences, Massachusetts General Hospital, Boston, Massachusetts, USA., Poznansky MC; Vaccine and Immunotherapy Center, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA.
المصدر: Xenotransplantation [Xenotransplantation] 2023 Nov-Dec; Vol. 30 (6), pp. e12826. Date of Electronic Publication: 2023 Sep 15.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Munksgaard International Publishers Country of Publication: Denmark NLM ID: 9438793 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1399-3089 (Electronic) Linking ISSN: 0908665X NLM ISO Abbreviation: Xenotransplantation Subsets: MEDLINE
أسماء مطبوعة: Publication: Copenhagen : Munksgaard International Publishers
Original Publication: Copenhagen : Munksgaard, c1994-
مواضيع طبية MeSH: Diabetes Mellitus* , Islets of Langerhans* , Islets of Langerhans Transplantation*/methods, Animals ; Alginates ; Chemokine CXCL12 ; Graft Survival ; Immunosuppression Therapy/methods ; Pilot Projects ; Primates ; Swine ; Transplantation, Heterologous/methods
مستخلص: Replacement of insulin-producing pancreatic beta-cells by islet transplantation offers a functional cure for type-1 diabetes (T1D). We recently demonstrated that a clinical grade alginate micro-encapsulant incorporating the immune-repellent chemokine and pro-survival factor CXCL12 could protect and sustain the integrity and function of autologous islets in healthy non-human primates (NHPs) without systemic immune suppression. In this pilot study, we examined the impact of the CXCL12 micro encapsulant on the function and inflammatory and immune responses of xenogeneic islets transplanted into the omental tissue bilayer sac (OB; n = 4) and diabetic (n = 1) NHPs. Changes in the expression of cytokines after implantation were limited to 2-6-fold changes in blood, most of which did not persist over the first 4 weeks after implantation. Flow cytometry of PBMCs following transplantation showed minimal changes in IFNγ or TNFα expression on xenoantigen-specific CD4 +  or CD8 +  T cells compared to unstimulated cells, and these occurred mainly in the first 4 weeks. Microbeads were readily retrievable for assessment at day 90 and day 180 and at retrieval were without microscopic signs of degradation or foreign body responses (FBR). In vitro and immunohistochemistry studies of explanted microbeads indicated the presence of functional xenogeneic islets at day 30 post transplantation in all biopsied NHPs. These results from a small pilot study revealed that CXCL12-microencapsulated xenogeneic islets abrogate inflammatory and adaptive immune responses to the xenograft. This work paves the way toward future larger scale studies of the transplantation of alginate microbeads with CXCL12 and porcine or human stem cell-derived beta cells or allogeneic islets into diabetic NHPs without systemic immunosuppression.
(© 2023 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.)
References: Niclauss N, Meier R, Bédat B, Berishvili E, Berney T. Beta-cell replacement: pancreas and islet cell transplantation. Endocr. Dev. 2016;31:146-162. https://doi.org/10.1159/000439412.
Lehmann R, Pavlicek V, Spinas GA, Weber M. Inseltransplantationbei type I diabetes mellitus [Islet transplantation in type I diabetes mellitus]. Ther Umsch. 2005;62(7):481-486. https://doi.org/10.1024/0040-5930.62.7.481.
Wisel SA, Braun HJ, Stock PG. Current outcomes in islet versus solid organ pancreas transplant for β-cell replacement in type 1 diabetes. Curr Opin Organ Transplant. 2016;21(4):399-404. https://doi.org/10.1097/MOT.0000000000000332.
Hu S, de Vos P. Polymeric approaches to reduce tissue responses against devices applied for islet-cell encapsulation. Front Bioeng Biotechnol., 2019;7:134. https://doi.org/10.3389/fbioe.2019.00134.
Zhang Q, Gonelle-Gispert C, Li Y. et al. Islet encapsulation: new developments for the treatment of type 1 diabetes. Front Immunol. 2022;13:869984. https://doi.org/10.3389/fimmu.2022.869984.
Cardona K, Milas Z, Strobert E. et al. Engraftment of adult porcine islet xenografts in diabetic nonhuman primates through targeting of costimulation pathways. Am J Transplant. 2007;7(10):2260-2268. https://doi.org/10.1111/j.1600-6143.2007.01933.x.
Hering B J, Wijkstrom M, Graham ML. et al. Prolonged diabetes reversal after intraportal xenotransplantation of wild-type porcine islets in immunosuppressed nonhuman primates. Nat Med. 2006;12(3):301-303. https://doi.org/10.1038/nm1369.
Vaithilingam V, Bernard ET. Islet transplantation and encapsulation: an update on recent developments. Rev of Diabet Stud: RDS. 2011;8(1):51-67. https://doi.org/10.1900/RDS.2011.8.51.
Buder B, Alexander M, Krishnan R, Chapman DW, Lakey JR. Encapsulated islet transplantation: strategies and clinical trials. Immune network. 2013;13(6):235-239. https://doi.org/10.4110/in.2013.13.6.235.
Chen T, Yua J., Duncanson S. et al. Alginate encapsulant incorporating CXCL12 supports longterm allo and xenoislet transplantation without systemic immune suppression. Am. J. Transplant. 2015;15:618-627. https://doi.org/10.1111/ajt.13049.
Papeta N, Chen T, Vianello F. et al. Long-term survival of transplanted allogeneic cells engineered to express a T cell chemorepellent. Transplantation. 2007;83, 174-183.
Righi E, Kashiwagi S, Yuan J. et al. CXCL12/CXCR4 blockade induces multimodal antitumor effects that prolong survival in an immunocompetent mouse model of ovarian cancer. Cancer Res. 2011;71(16):5522-5534.
McCandless EE, Wang Q, Woerner BM, Harper JM, Klein RS. CXCL12 limits inflammation by localizing mononuclear infiltrates to the perivascular space during experimental autoimmune encephalomyelitis. J Immunol. 2006;177:8053-8064.
Cowley MJ, Weinberg A, Zammit NW, et al. Human islets express a marked proinflammatory molecular signature prior to transplantation. Cell Transplant. 2012;21:2063-2078.
Jin DK, Shido K, Kopp HG. et al. Cytokine-mediated deployment of SDF-1 induces revascularization through recruitment of CXCR4+ hemangiocytes. Nat Med. 2006;12:557-567.
Castilla DM, Liu ZJ, Tian R, Li Y, Livingstone AS, Velazquez OC. A novel autologous cell-based therapy to promote diabetic wound healing. Ann Surg 2012;256(4):560-572. https://doi.org/10.1097/SLA.0b013e31826a9064.
Xu X, Zhu F, Zhang M. et al. Stromal cell-derived factor-1 enhances wound healing through recruiting bone marrow-derived mesenchymal stem cells to the wound area and promoting neovascularization. Cells Tissues Organs. 2013;197:103-113.
Liu Z, Habener JF. Stromal cell-derived factor-1 promotes survival of pancreatic beta cells by the stabilisation of beta-catenin and activation of transcription factor 7-like 2 (TCF7L2). Diabetologia. 2009;52:1589-1598.
Ballinger WF, Lacy PE. Transplantation of intact pancreatic islets in rats. Surgery. 1972;72(2):175-186.
de Vos P, van Hoogmoed CG, van Zanten J, Netter S, Strubbe JH, Busscher HJ. Long-term biocompatibility, chemistry, and function of microencapsulated pancreatic islets. Biomaterials. 2003;24 (2):305-312.
Qi M, Lacik I, Kollarikova G. et al. A recommended laparoscopic procedure for implantation of microcapsules in the peritoneal cavity of non-human primates. J Surg Res. 2011;168(1):e117-e123.
Dufrane D, Goebbels R-M, Saliez A, Guiot Y, Gianello P. Six-month survival of microencapsulated pig islets and alginate biocompatibility in primates: proof of concept. Transplantation. 2006;81(9):1345-1353.
Elliott RB, Escobar L, Tan PL. et al. Intraperitoneal alginate-encapsulated neonatal porcine islets in a placebo-controlled study with 16 diabetic cynomolgus primates. Transplant Proc. 2005;37:3505-3508.
Safley AS, Kenyon SN, Berman MD. et al. Microencapsulated adult porcine islets transplanted intraperitoneally in streptozotocin-diabetic non-human primates. Xenotransplantation. 2018;25(6):e12450. https://doi.org/10.1111/xen.12450.
Alagpulinsa DA, Cao J, Driscoll RK. et al. Alginate-microencapsulation of human stem cell-derived β cells with CXCL12 prolongs their survival and function in immunocompetent mice without systemic immunosuppression. Am J Transplant. 2019;19(7):1930-1940. https://doi.org/10.1111/ajt.15308.
Sremac M, Lei J, Penson MFE. et al. Preliminary studies of the impact of CXCL12 on the foreign body reaction to pancreatic islets microencapsulated in alginate in nonhuman primates. Transplantation Direct. 2019;5:e447. https://doi.org/10.1097/TXD.0000000000000890.
Brandhorst D, Brandhorst H, Hering BJ, Federlin K, Bretzel RG. Islet isolation from the pancreas of large mammals and humans: 10 years of experience. Exp Clin Endocrin. 1995;103(Suppl):23.
O'Neil JJ, Stegemann JP, Nicholson DT. et al. The isolation and function of porcine islets from market weight pigs. Cell Transplant. 2001;10:235-246.
Ricordi C, Socci C, Davalli AM. Isolation of the elusive pig islets. Surgery. 1990;107:688.
Yonelawa Y, Matsumoto S, Okitsu T. et al. Effective islet isolation method with extremely high islet yields from adult pigs. Cell Transplant. 2005;14:757-762.
Colton C, Papas KK, Pisania A. et al. Characterization of islet preparations. Cell Transplant. 2007;85-133. https://doi.org/10.1016/B978-012369415-7/50007-7.
Functional assessment of purified human pancreatic islets: glucose stimulated insulin release by ELISA - a standard operating procedure of the NIH clinical islet transplantation consortium. CellR4. 2014;2(2):e900.
Purified human pancreatic islet - viability estimation of islet using fluorescent dyes, attachment II, islet viability worksheet - Standard operating procedure of the NIH Clinical Islet Transplantation Consortium. CellR4. 2015;3(1):e1376.
Ricordi C, Goldstein JS, Balamurugan AN. et al. National institutes of health-sponsored clinical islet transplantation consortium phase 3 trial: manufacture of a complex cellular product at eight processing facilities. Diabetes. 2016;65(11):3418-3428. https://doi.org/10.2337/db16-0234. Epub 2016 Jul 27. Erratum in: Diabetes. 2017 Sep;66(9):2531.
NIH CIT Consortium Chemistry Manufacturing Controls Monitoring Committee; NIH CIT Consortium. Purified human pancreatic islet-viability estimation of islet using fluorescent dyes (FDA/PI): standard operating procedure of the NIH clinical islet transplantation consortium. CellR4 Repair Replace Regen Reprogram. 2015;3(1):e1378.
Boyd V, Cholewa OM, Papas KK. Limitations in the use of fluorescein diacetate/propidium iodide (FDA/PI) and cell permeable nucleic acid stains for viability measurements of isolated islets of langerhans. Curr Trends Biotechnol Pharm. 2008;2:286-304.
Papas KK, Colton CK, Nelson RA. et al. Human islet oxygen consumption rate and DNA measurements predict diabetes reversal in nude mice. Am J Transplant. 2007;7:707-713. https://doi.org/10.1111/j.1600-6143.2006.01655.x.
Papas KK, Pisania A, Wu H, Weir GC, Colton CK. A stirred microchamber for oxygen consumption rate measurements with pancreatic islets. Biotechnol Bioeng. 2007;98(5):1071-1082.
Bentsi-Barnes K, Doyle ME, Abad D, Kandeel F, Al-Abdullah I. Detailed protocol for evaluation of dynamic perifusion of human islets to assess β-cell function. Islets. 2011;3(5):284-290. https://doi.org/10.4161/isl.3.5.15938.
Buchwald P, Tamayo-Garcia A, Manzoli V, Tomei AA, Stabler CL. Glucose-stimulated insulin release: parallel perifusion studies of free and hydrogel encapsulated human pancreatic islets. Biotechnol Bioeng. 2018;115(1):232-245. https://doi.org/10.1002/bit.26442.
Mueller KR, Balamurugan AN, Cline GW. et al. Differences in glucose-stimulated insulin secretion in vitro of islets from human, nonhuman primate, and porcine origin. Xenotransplantation. 2013;20(2):75-81.
Pradip B, Roopa M, John W. et al. Optimizing the production of suspension cells using the G-Rex “M” series. Molecular Therapy-Methods Clin Development. 2014;1:14015, ISSN 2329-0501. https://doi.org/10.1038/mtm.2014.15.
Wynn TA. Cellular and molecular mechanisms of fibrosis. J Pathol. 2008;214(2):199-210. https://doi.org/10.1002/path.2277.
Wynn TA, Ramalingam TR. Mechanisms of fibrosis: therapeutic translation for fibrotic disease. Nat Med. 2012;18(7):1028-1040. https://doi.org/10.1038/nm.2807.
Bochenek MA, Veiseh O, Vegas AJ. et al. Alginate encapsulation as long-term immune protection of allogeneic pancreatic islet cells transplanted into the omental bursa of macaques. Nat Biomed Eng. 2018;2:810-821. https://doi.org/10.1038/s41551-018-0275-1.
Veiseh O, Doloff JC, Ma M. et al. Size- and shape-dependent foreign body immune response to materials implanted in rodents and non-human primates. Nat Mater 2015;14(6):643-651. https://doi.org/10.1038/nmat4290.
Ha CT, Li X-H, Fu D. et al. Circulating interleukin-18 as a biomarker of total-body radiation exposure in mice, minipigs, and nonhuman primates (NHP). PLoS One. 2014;9(10):e109249. https://doi.org/10.1371/journal.pone.0109249.
Shi Y, Liu C, Roberts A. et al. Granulocyte-macrophage colony-stimulating factor (GM-CSF) and T-cell responses: what we do and don't know. Cell Res. 2006;16:126-213. https://doi.org/10.1038/sj.cr.7310017.
Esposito K, Marfella R, Nappo F. et al. Inflammatory cytokine concentrations are acutely increased by hyperglycemia in humans: role of oxidative stress. Circulation. 2002;106(16):2067-2072.
Bromander S, Anckarsäter R, Kristiansson M. et al. Changes in serum and cerebrospinal fluid cytokines in response to non-neurological surgery: an observational study. J Neuroinflammation. 2012;9:242.https://doi.org/10.1186/1742-2094-9-242.
Giavedoni LD. Simultaneous detection of multiple cytokines and chemokines from nonhuman primates using luminex technology. J Immunol Methods. 2005;301(1-2):89-101. ISSN 0022-1759. https://doi.org/10.1016/j.jim.2005.03.015.
https://www.mesoscale.com/~/media/files/product%20highlights/cytokine%20v-plex%20nhp%20product%20highlights.pdf.
https://www.mesoscale.com/~/media/files/product%20inserts/cytokine%20panel%201%20nhp%20insert.pdf.
Stone LH, Oppler SH, Nugent, JL. et al. Serum cytokine profiles in healthy nonhuman primates are blunted by sedation and demonstrate sexual dimorphism as detected by a validated multiplex immunoassay. Sci Rep. 2021;11:2340. https://doi.org/10.1038/s41598-021-81953-7.
Donate-Correa J, Martín-Núñez E, Muros-de-Fuentes M, Mora-Fernández C, Navarro-González JF. Inflammatory cytokines in diabetic nephropathy. J Diabetes Res. 2015;2015:948417. https://doi.org/10.1155/2015/948417. Epub 2015 Feb 15.
Navarro-Gonzalez, Juan F. Mora-Fernandez, Carmen. The role of inflammatory cytokines in diabetic nephropathy. J Am Soc Nephrol. 2008;19(3):433-442. https://doi.org/10.1681/ASN.2007091048.
Deng H, Zhang A, Pang DRR. et al. Bioengineered omental transplant site promotes pancreatic islet allografts survival in non-human primates. Cell Reports Medicine. 2023;4(3):100959. https://doi.org/10.1016/j.xcrm.2023.100959.
Graham ML, Bellin MD, Papas KK, Hering BJ, Schuurman HJ. Species incompatibilities in the pig-to-macaque islet xenotransplant model affect transplant outcome: a comparison with allotransplantation. Xenotransplantation. 2011;18(6):328-342.
Graham ML, Schuurman HJ. The usefulness and limitations of the diabetic macaque model in evaluating long-term porcine islet xenograft survival. Xenotransplantation. 2013;20(1):5-17.
Hirsch IB. Type 1 diabetes mellitus and the use of flexible insulin regimens. Am Fam Physician. 1999;60(8):2343-2352, 2355-6.
Kim GS, Cho CW, Lee JH. et al. Optimal allogeneic islet dose for transplantation in insulin-dependent diabetic Macaca fascicularis monkeys. Sci Rep. 2021;11(1):8617. https://doi.org/10.1038/s41598-021-88166-y.
Barkai U, Rotem A, de Vos P. Survival of encapsulated islets: more than a membrane story. Methods Mol Biol. 2017;1479:3-21.
Eizirik DL, Korbutt GS, Hellerström C. Prolonged exposure of human pancreatic islets to high glucose concentrations in vitro impairs the beta-cell function. J Clin Invest. 1992;90(4):1263-1268.
Krishnan R, Ko D, Tucker T. et al. Strategies to combat hypoxia in encapsulated islet transplantation. Surgery Curr Res. 2016;6:259.
Ashimova A, Yegorov S, Negmetzhanov B, Hortelano G. Cell encapsulation within alginate microcapsules: Immunological challenges and outlook. Front Bioeng. Biotechnol. 2019;7:380. https://doi.org/10.3389/fbioe.2019.00380.
Safley SA, Barber GF, Holdcraft RW. et al. Multiple clinically relevant immunotherapies prolong the function of microencapsulated porcine islet xenografts in diabetic NOD mice without the use of anti-CD154 mAb. Xenotransplantation. 2020;27(4):e12577.
Litbarg NO, Gudehithlu KP, Sethupathi P. et al. Activated omentum becomes rich in factors that promote healing and tissue regeneration. Cell Tissue Res. 2007;328:487-497. https://doi.org/10.1007/s00441-006-0356-4.
معلومات مُعتمدة: grant 2-SRA-2014-290-Q-R United States JDRF
فهرسة مساهمة: Keywords: alginate; chemokine CXCL12; immunosuppression; microencapsulated; porcine islets
المشرفين على المادة: 0 (Alginates)
0 (Chemokine CXCL12)
تواريخ الأحداث: Date Created: 20230915 Date Completed: 20231223 Latest Revision: 20231223
رمز التحديث: 20231223
DOI: 10.1111/xen.12826
PMID: 37712342
قاعدة البيانات: MEDLINE
الوصف
تدمد:1399-3089
DOI:10.1111/xen.12826