دورية أكاديمية

A robust classification of acute lymphocytic leukemia-based microscopic images with supervised Hilbert-Huang transform.

التفاصيل البيبلوغرافية
العنوان: A robust classification of acute lymphocytic leukemia-based microscopic images with supervised Hilbert-Huang transform.
المؤلفون: Elrefaie RM; Department of Electronics and Communications Engineering, Faculty of Engineering, Mansoura University, Mansoura, Egypt., Mohamed MA; Department of Electronics and Communications Engineering, Faculty of Engineering, Mansoura University, Mansoura, Egypt., Marzouk EA; Department of Electronics and Communications Engineering, Faculty of Engineering, Mansoura University, Mansoura, Egypt., Ata MM; School of Computational Sciences and Artificial Intelligence (CSAI), Zewail City of Science and Technology, 6th of October City, Giza, Egypt.; Department of Communications and Electronics Engineering, MISR Higher Institute for Engineering and Technology, Mansoura, Egypt.
المصدر: Microscopy research and technique [Microsc Res Tech] 2024 Feb; Vol. 87 (2), pp. 191-204. Date of Electronic Publication: 2023 Sep 15.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Wiley-Liss Country of Publication: United States NLM ID: 9203012 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1097-0029 (Electronic) Linking ISSN: 1059910X NLM ISO Abbreviation: Microsc Res Tech Subsets: MEDLINE
أسماء مطبوعة: Original Publication: New York, NY : Wiley-Liss, c1992-
مواضيع طبية MeSH: Algorithms* , Precursor Cell Lymphoblastic Leukemia-Lymphoma*, Child ; Humans ; Bayes Theorem ; Neural Networks, Computer ; Image Interpretation, Computer-Assisted/methods
مستخلص: Acute lymphocytic leukemia (ALL) is a malignant condition characterized by the development of blast cells in the bone marrow and their quick dissemination into the bloodstream. It primarily affects children and individuals over the age of 60. Manual blood testing, which has been around for a long time, may be slow. The likelihood of recognizing ALL in its early stages was increased by automating the diagnosis. This research developed an improved criterion for classifying ALL microscopic images into two categories: normal images and blast images. First, to save processing time, innovative image preprocessing techniques were employed to gather data for data augmentation, enhancement, and conversion. The K-means clustering technique was also utilized to effectively segment the relevant nuclei from the background. Furthermore, the most salient features were extracted using an empirical mode decomposition (EMD) based on the Hilbert-Huang transform. MATLAB functions such as principal component analysis, gray level co-occurrence matrix, local binary pattern, shape features, discrete cosine transform, discrete Fourier transform, discrete wavelet transform, and independent component analysis have been used and compared with EMD. The Bayesian regularization (BR) method has been implemented in the neural networks (NNs) classifier. Along with NNs, other classifiers such as support vector machine, K-nearest neighbors, random forest, naive Bayes, logistic regression, and decision tree have been used, evaluated, and contrasted with NNs. According to experimental findings, the ALL-IDB2 (Image Database 2) dataset's NNs-based-EMD model classified objects with an accuracy of 98.7%, sensitivity of 99.3%, and specificity of 98.1%. RESEARCH HIGHLIGHTS: Implement a robust method for classifying normal and blast ALL images in the state of the art using the combination of the BR algorithm and the neural networks classifier. Perform robust data processing via data augmentation and conversion from RGB (Red, Green, and Blue) image LAB (Luminosity, A: color space, B: color space) image. Extract the nuclei correctly from the background image using k-means clustering. Extract the most salient features from the segmented images using EMD in the state of the art of HHT.
(© 2023 Wiley Periodicals LLC.)
References: Abdeldaim, A. M., Sahlol, A. T., Elhoseny, M., & Hassanien, A. E. (2018). Computer-aided acute lymphoblastic leukemia diagnosis system based on image analysis. Advances in Soft Computing and Machine Learning in Image Processing, 730, 131-147. https://doi.org/10.1007/978-3-319-63754-9_7.
Abhishek, A., Jha, R. K., Sinha, R., & Jha, K. (2021). Automated classification of acute leukemia on a heterogeneous dataset using machine learning and deep learning techniques. Biomedical Signal Processing and Control, 72, 103341. https://doi.org/10.1016/j.bspc.2021.103341.
Al-jaboriy, S. S., Sjarif, N. N. A., Chuprat, S., & Abduallah, W. M. (2019). Acute lymphoblastic leukemia segmentation using local pixel information. Pattern Recognition Letters, 125, 85-90. https://doi.org/10.1016/j.patrec.2019.03.024.
Anwar, S., & Alam, A. (2020). A convolutional neural network-based learning approach to acute lymphoblastic leukaemia detection with automated feature extraction. Medical & Biological Engineering & Computing, 58(12), 3113-3121. https://doi.org/10.1007/s11517-020-02282-x.
Baughman, D. R., & Liu, Y. A. (1995). Classification: fault diagnosis and feature categorization. Neural Networks in Bioprocessing and Chemical Engineering, 110-171, 365-433.
Boldú, L., Merino, A., Acevedo, A., Molina, A., & Rodellar, J. (2021). A deep learning model (ALNet) for the diagnosis of acute leukaemia lineage using peripheral blood cell images. Computer Methods and Programs in Biomedicine, 202, 105999. https://doi.org/10.1016/j.cmpb.2021.105999.
Burden, F., & Winkler, D. (2008). Bayesian regularization of neural networks. Artificial Neural Networks, 23-42. https://doi.org/10.1007/978-1-60327-101-1_3.
Das, B. K., & Dutta, H. S. (2019). Infection level identification for leukemia detection using optimized support vector neural network. The Imaging Science Journal, 67(8), 417-433. https://doi.org/10.1080/13682199.2019.1701172.
Geng, C., Wang, F., Zhang, J., & Jin, Z. (2014). Modal parameters identification of power transformer winding based on improved empirical mode decomposition method. Electric Power Systems Research, 108, 331-339. https://doi.org/10.1016/j.epsr.2013.12.002.
Genovese, A., Hosseini, M. S., Piuri, V., Plataniotis, K. N., & Scotti, F. (2021). Histopathological transfer learning for acute lymphoblastic leukemia detection. 2021 IEEE International Conference on Computational Intelligence and Virtual Environments for Measurement Systems and Applications (CIVEMSA), 1-6. https://doi.org/10.1109/CIVEMSA52099.2021.9493677.
Hegde, R. B., Prasad, K., Hebbar, H., Singh, B. M. K., & Sandhya, I. (2020). Automated decision support system for detection of leukemia from peripheral blood smear images. Journal of Digital Imaging, 33(2), 361-374. https://doi.org/10.1007/s10278-019-00288-y.
Jha, K. K., & Dutta, H. S. (2019). Mutual information based hybrid model and deep learning for acute lymphocytic leukemia detection in single cell blood smear images. Computer Methods and Programs in Biomedicine, 179, 104987. https://doi.org/10.1016/j.cmpb.2019.104987.
Kassani, S. H., Kassani, P. H., Wesolowski, M. J., Schneider, K. A., & Deters, R. (2019). A hybrid deep learning architecture for leukemic B-lymphoblast classification. 2019 International Conference on Information and Communication Technology Convergence (ICTC), 271-276. https://doi.org/10.1109/ICTC46691.2019.8939959.
Kumar, D., Jain, N., Khurana, A., Mittal, S., Satapathy, S. C., Senkerik, R., & Hemanth, J. D. (2020). Automatic detection of white blood cancer from bone marrow microscopic images using convolutional neural networks. IEEE. Access, 8, 142521-142531. https://doi.org/10.1109/ACCESS.2020.3012292.
Leukemia Dataset. (2022). ALL-IDB dataset for classification (Accessed May 5, 2022). https://www.kaggle.com/datasets/nikhilsharma00/leukemia-dataset.
Luukko, P. J., Helske, J., & Räsänen, E. (2016). Introducing libeemd: A program package for performing the ensemble empirical mode decomposition. Computational Statistics, 31(2), 545-557. https://doi.org/10.1007/s00180-015-0603-9.
Makem, M., & Tiedeu, A. (2020). An efficient algorithm for detection of white blood cell nuclei using adaptive three stage PCA-based fusion. Informatics in Medicine Unlocked, 20, 100416. https://doi.org/10.1016/j.imu.2020.100416.
Mallick, P. K., Mohapatra, S. K., Chae, G. S., & Mohanty, M. N. (2020). Convergent learning-based model for leukemia classification from gene expression. Personal and Ubiquitous Computing, 1-8, 1103-1110. https://doi.org/10.1007/s00779-020-01467-3.
Mohapatra, S., & Patra, D. (2010). Automated cell nucleus segmentation and acute leukemia detection in blood microscopic images. 2010 International Conference on Systems in Medicine and Biology, 49-54. https://doi.org/10.1109/ICSMB.2010.5735344.
Moshavash, Z., Danyali, H., & Helfroush, M. S. (2018). An automatic and robust decision support system for accurate acute leukemia diagnosis from blood microscopic images. Journal of Digital Imaging, 31, 702-717. https://doi.org/10.1007/s10278-018-0074-y.
Negm, A. S., Hassan, O. A., & Kandil, A. H. (2018). A decision support system for acute leukaemia classification based on digital microscopic images. Alexandria Engineering Journal, 57(4), 2319-2332. https://doi.org/10.1016/j.aej.2017.08.025.
Rehman, A., Abbas, N., Saba, T., Rahman, S. I. U., Mehmood, Z., & Kolivand, H. (2018). Classification of acute lymphoblastic leukemia using deep learning. Microscopy Research and Technique, 81(11), 1310-1317. https://doi.org/10.1002/jemt.23139.
Sahlol, A. T., Abdeldaim, A. M., & Hassanien, A. E. (2019). Automatic acute lymphoblastic leukemia classification model using social spider optimization algorithm. Soft Computing, 23(15), 6345-6360. https://doi.org/10.1007/s00500-018-3288-5.
Sahlol, A. T., Kollmannsberger, P., & Ewees, A. A. (2020). Efficient classification of white blood cell leukemia with improved swarm optimization of deep features. Scientific Reports, 10(1), 1-11. https://doi.org/10.1038/s41598-020-59215-9.
Selvaraj, S., & Kanakaraj, B. R. (2014). K-means clustering based segmentation of lymphocytic nuclei for acute lymphocytic leukemia detection. International Journal of Applied Engineering Research, 9(21), 11423-11432.
Shah, A., Naqvi, S. S., Naveed, K., Salem, N., Khan, M. A., & Alimgir, K. S. (2021). Automated diagnosis of leukemia: A comprehensive review. IEEE Access, 9, 132097-132124. https://doi.org/10.1109/ACCESS.2021.3114059.
Sukhia, K. N., Ghafoor, A., Riaz, M. M., & Iltaf, N. (2019). Automated acute lymphoblastic leukaemia detection system using microscopic images. IET Image Processing, 13(13), 2548-2553. https://doi.org/10.1049/iet-ipr.2018.5471.
Surya, S. G. V., Jain, C., & Venkateswaran, N. (2021). Detection of acute lymphoblastic leukemia by utilizing deep learning methods. Machine Vision and Augmented Intelligence-Theory and Applications, 796, 453-467. https://doi.org/10.1007/978-981-16-5078-9_38.
Truong, K. H., Minh, D. N., & Trong, L. D. (2021). Automatic white blood cell classification using the combination of convolution neural network and support vector machine. Hybrid Intelligent Systems: 20th International Conference on Hybrid Intelligent Systems, 720-728. https://doi.org/10.1007/978-3-030-73050-5_70.
Umamaheswari, D., & Geetha, S. (2018). A framework for efficient recognition and classification of acute lymphoblastic leukemia with a novel customized-KNN classifier. Journal of Computing and Information Technology, 26(2), 131-140. https://doi.org/10.20532/cit.2018.1004123.
Vogado, L. H., Veras, R. M., Araujo, F. H., Silva, R. R., & Aires, K. R. (2018). Leukemia diagnosis in blood slides using transfer learning in CNNs and SVM for classification. Engineering Applications of Artificial Intelligence, 72, 415-422. https://doi.org/10.1016/j.engappai.2018.04.024.
Wady, S. H. (2022). Classification of acute lymphoblastic leukemia through the fusion of local descriptors. UHD Journal of Science and Technology, 6(1), 21-33. https://doi.org/10.21928/uhdjst.v6n1y2022.
Yang, W., Peng, Z., Wei, K., Shi, P., & Tian, W. (2017). Superiorities of variational mode decomposition over empirical mode decomposition particularly in time-frequency feature extraction and wind turbine condition monitoring. IET Renewable Power Generation, 11(4), 443-452. https://doi.org/10.1049/iet-rpg.2016.0088.
Zeiler, A., Faltermeier, R., Keck, I. R., Tomé, A. M., Puntonet, C. G., & Lang, E. W. (2010). Empirical mode decomposition-an introduction. The 2010 International Joint Conference on Neural Networks (IJCNN), 1-8. https://doi.org/10.1109/IJCNN.2010.5596829.
Zhou, F., Yang, L., Zhou, H., & Yang, L. (2016). Optimal averages for nonlinear signal decompositions-Another alternative for empirical mode decomposition. Signal Processing, 121, 17-29. https://doi.org/10.1016/j.sigpro.2015.10.022.
فهرسة مساهمة: Keywords: Bayesian regularization; LAB; acute lymphocytic leukemia; classification; empirical mode decomposition; k-means; neural networks
تواريخ الأحداث: Date Created: 20230916 Date Completed: 20240112 Latest Revision: 20240112
رمز التحديث: 20240112
DOI: 10.1002/jemt.24425
PMID: 37715495
قاعدة البيانات: MEDLINE
الوصف
تدمد:1097-0029
DOI:10.1002/jemt.24425