دورية أكاديمية

Evaluating β-cryptoxanthin antioxidant properties against ROS-induced macromolecular damages and determining its photo-stability and in-vitro SPF.

التفاصيل البيبلوغرافية
العنوان: Evaluating β-cryptoxanthin antioxidant properties against ROS-induced macromolecular damages and determining its photo-stability and in-vitro SPF.
المؤلفون: Brahma D; Department of Biotechnology, National Institute of Technology, Durgapur, WB, 713209, India., Dutta D; Department of Biotechnology, National Institute of Technology, Durgapur, WB, 713209, India. debjani.dutta@bt.nitdgp.ac.in.
المصدر: World journal of microbiology & biotechnology [World J Microbiol Biotechnol] 2023 Sep 16; Vol. 39 (11), pp. 310. Date of Electronic Publication: 2023 Sep 16.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Springer Country of Publication: Germany NLM ID: 9012472 Publication Model: Electronic Cited Medium: Internet ISSN: 1573-0972 (Electronic) Linking ISSN: 09593993 NLM ISO Abbreviation: World J Microbiol Biotechnol Subsets: MEDLINE
أسماء مطبوعة: Publication: 2005- : Berlin : Springer
Original Publication: Oxford, OX, UK : Published by Rapid Communications of Oxford Ltd in association with UNESCO and in collaboration with the International Union of Microbiological Societies, c1990-
مواضيع طبية MeSH: Antioxidants*/pharmacology , Beta-Cryptoxanthin*, Reactive Oxygen Species ; DNA Damage ; Hydrogen
مستخلص: Natural antioxidants have become vital to minimize macromolecular damage caused by Reactive Oxygen Species (ROS). This study investigated the antioxidant property of β-cryptoxanthin (β-CRX) extracted from Kocuria marina DAGII and its protective effect against macromolecular damages by generating ROS via two models: UV radiation and the Fenton reaction. β-cryptoxanthin exhibited the highest scavenging activity towards hydrogen peroxide radicals with an IC 50 value of 38.30 ± 1.13 μg/ml, favoring the hydrogen atom transfer mechanism. The total antioxidant capacity value of 872.0101 ± 1.84 μg BHT/mg β-CRX indicated the cumulative ROS scavenging ability of β-cryptoxanthin. β-cryptoxanthin could protect against ROS-induced lipid peroxidation, protein oxidation, and DNA damage. The highest lipid peroxidation and protein oxidation inhibition values of β-cryptoxanthin against ROS were 99.371 ± 0.51% and 78.19 ± 0.15%, respectively. β-cryptoxanthin also showed a protective effect in maintaining DNA intactness against ROS-mediated DNA damage. Allium cepa test showed the non-genotoxic nature of β-cryptoxanthin and its protective effect against ROS genotoxic effects. A photo-stability study of β-cryptoxanthin toward UVA and UVB radiation showed a rapid bleaching result of UVB obeying pseudo-zero order kinetics with an average R 2 value of 0.9897 and a higher k value (-6.3 × 10 -11  ± 0.2 M/s) than UVA (k value -3.1 × 10 -11  ± 0.17 M/s), signifying that UVB is more potent toward photo-degradation. The good SPF value of 23.1737 ± 0.15 showed the UV protection capability of β-cryptoxanthin. Thus, the present study suggests that β-cryptoxanthin could be a valuable antioxidant to protect against ROS-induced various macromolecular damages and act as a good UV protectant.
(© 2023. The Author(s), under exclusive licence to Springer Nature B.V.)
References: Aissous I, Benrebai M, Cacan E, Berkel C, Erenler R, Souad A, Samir B, Benayache F, Chawki B (2021) Antioxidant and antiproliferative activities of the n-butanol extract of Centaurea maroccana Ball aerial parts. Curr Issues Pharm Med Sci 34:5–11. https://doi.org/10.2478/cipms-2021-0002. (PMID: 10.2478/cipms-2021-0002)
Alabi OA, Atanda HC, Olumurewa JAV (2022) Cytogenotoxicity of the aqueous extract of Parquetina nigrescens leaf using Allium cepa assay. Protoplasma 259:1417–1425. https://doi.org/10.1007/s00709-022-01741-6. (PMID: 10.1007/s00709-022-01741-635146572)
Ali ZS, Muhammad D, Zrieki A (2022) In vitro Assessment of sun protection factor (SPF) and Antioxidant activity of Viola odorata extracts. Res J Pharmacy Technol 15(2):655–660.
Ansary TM, Hossain MR, Kamiya K, Komine M, Ohtsuki M (2021) Inflammatory molecules associated with ultraviolet radiation-mediated skin aging. Int J Mol Sci 22(8):3974. https://doi.org/10.3390/ijms22083974. (PMID: 10.3390/ijms22083974339214448069861)
Awah FM, Verla AW (2010) Antioxidant activity, nitric oxide scavenging activity and phenolic contents of Ocimum gratissimum leaf extract. J Med Plants Res 4(24):2479–2487. https://doi.org/10.5897/JMPR10.407. (PMID: 10.5897/JMPR10.407)
Bajgar R, Moukova A, Chalupnikova N, Kolarova H (2021) Differences in the effects of broad-band UVA and narrow-band UVB on epidermal keratinocytes. Int J Environ Res Public Health 18:12480. https://doi.org/10.3390/ijerph182312480. (PMID: 10.3390/ijerph182312480348862058656598)
Barbouti A, Lagopati N, Veroutis D, Goulas V, Evangelou K, Kanavaros P, Gorgoulis VG, Galaris D (2021) Implication of dietary iron-chelating bioactive compounds in molecular mechanisms of oxidative stress-induced cell ageing. Antioxidants 10:491. https://doi.org/10.3390/antiox10030491. (PMID: 10.3390/antiox10030491338009758003849)
Bardoloi A, Soren AD (2022) Genotoxicity induced by medicinal plants. Bull Natl Res Cent. https://doi.org/10.1186/s42269-022-00803-2. (PMID: 10.1186/s42269-022-00803-2)
Barretto DA, Vootla SK (2018) In Vitro Anticancer Activity of Staphyloxanthin Pigment extracted from Staphylococcus gallinarum KX912244, a Gut Microbe of Bombyx mori. Indian J Microbiol 58(2):146–158. https://doi.org/10.1007/s12088-018-0718-0. (PMID: 10.1007/s12088-018-0718-0296511735891481)
Behera S, Pradhan J (2021) Uneven economic burden of non-communicable diseases among Indian households: A comparative analysis. PLoS ONE 16(12):e0260628. https://doi.org/10.1371/journal.pone.0260628. (PMID: 10.1371/journal.pone.0260628348904008664228)
Benzie IF, Strain JJ (1996) The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal Biochem 239(1):70–76. https://doi.org/10.1006/abio.1996.0292 . (PMID: 8660627). (PMID: 10.1006/abio.1996.02928660627)
Bera S (2020) Carotenoid accumulation in Dietzia maris NITD protects from macromolecular damage. J Biotechnol Comput Biol Bionanotechnol 101(3):171–178. https://doi.org/10.5114/bta.2020.97876. (PMID: 10.5114/bta.2020.97876)
Bhattacharya S, Heidler P, Varshney S (2023) Incorporating neglected non-communicable diseases into the national health program—A review. Front Public Health 10:1093170. https://doi.org/10.3389/fpubh.2022.1093170. (PMID: 10.3389/fpubh.2022.1093170367038219871457)
Bibi S, Ahmed Z, Dilawar S, Iqbal M, Sheikh SH, Khalid S, Ahmad MT (2021) Antidiabetic, anti-inflammatory and antioxidant activity of Artemisia Roxburghiana along with its qualitative and quantitative phytochemical Screening. Adv Basic Med Sci 5(1):19–24.
Black HS, Boehm F, Edge R, Truscott TG (2020) The benefits and risks of certain dietary carotenoids that exhibit both anti- and pro-oxidative mechanisms-a comprehensive review. Antioxidants (basel) 9(3):264. https://doi.org/10.3390/antiox9030264. (PMID: 10.3390/antiox903026432210038)
Brand-Williams W, Cuvelier ME, Berset C (1995) Use of a free-radical method to evaluate antioxidant activity. Food Sci Technol 28(1):25–30. https://doi.org/10.1016/S0023-6438(95)80008-5. (PMID: 10.1016/S0023-6438(95)80008-5)
Chen J, Liu Y, Zhao Z, Qiu J (2021) Oxidative stress in the skin: Impact and related protection. Int J Cosmet Sci 43(5):495–509. https://doi.org/10.1111/ics.12728. (PMID: 10.1111/ics.1272834312881)
Collin F (2019) Chemical basis of reactive oxygen species reactivity and involvement in neurodegenerative diseases. Int J Mol Sci 20(10):2407. https://doi.org/10.3390/ijms20102407. (PMID: 10.3390/ijms20102407310966086566277)
Cvetkovic D, Markovic D (2008) Stability of carotenoids toward UV-irradiation in hexane solution. J Serb Chem Soc 73(1):15–27. https://doi.org/10.2298/JSC0801015C. (PMID: 10.2298/JSC0801015C)
De Jager TL, Cockrell AE, Du Plessis SS (2017) Ultraviolet light induced generation of reactive oxygen species. Adv Experim Med Biol. https://doi.org/10.1007/978-3-319-56017-5_2. (PMID: 10.1007/978-3-319-56017-5_2)
Dhale MA, Javagal M, Puttananjaiah MKH (2018) Protective and antioxidative effect of rubropunctatin against oxidative protein damage induced by metal catalyzedreaction. Int J Biol Macromol 116:409–416. https://doi.org/10.1016/j.ijbiomac.2018.04.170. (PMID: 10.1016/j.ijbiomac.2018.04.17029730002)
Fadilah NIM, Phang SJ, Kamaruzaman N, Salleh A, Zawani M, Sanyal A, Maarof M, Fauzi MB (2023) Antioxidant biomaterials in cutaneous wound healing and tissue regeneration: a critical review. Antioxidants 12(4):787. https://doi.org/10.3390/antiox12040787. (PMID: 10.3390/antiox120407873710716410198372)
Furukawa JY, Martinez RM, Morocho-Jácome AL, Castillo-Gómez TS, Pereda-Contreras VJ, Rosado C, Velasco MVR, Baby AR (2021) Skin impacts from exposure to ultraviolet, visible, infrared, and artificial lights - a review. J Cosmet Laser Ther 23(1–2):1–7. https://doi.org/10.1080/14764172.2021.1950767. (PMID: 10.1080/14764172.2021.195076734669525)
Galano A, Vargasz R, Martinez A (2009) Carotenoids can act as antioxidants by oxidizing the superoxide radical anion. Phys Chem Chem Phys 12:193–200. https://doi.org/10.1039/b917636e. (PMID: 10.1039/b917636e20024459)
Gao F, Xiong Z (2021) Reactive oxygen species responsive polymers for drug delivery systems. Front Chem 23(9):649048. https://doi.org/10.3389/fchem.2021.649048. (PMID: 10.3389/fchem.2021.649048)
González-Peña MA, Ortega-Regules AE, Anaya de Parrodi C, Lozada-Ramírez JD (2023) Chemistry, occurrence, properties, applications, and encapsulation of carotenoids-a review. Plants (basel) 12(2):313. https://doi.org/10.3390/plants12020313. (PMID: 10.3390/plants1202031336679026)
Goswami G, Chakraborty S, Chaudhuri S, Dutta D (2012) Optimization of process parameters by response surfacemethodology and kinetic modeling for batch production of canthaxanthin by Dietzia maris NIT-D (accession number:HM151403). Bioprocess Biosyst Eng 35:1375–1388. https://doi.org/10.1007/s00449-012-0726-0. (PMID: 10.1007/s00449-012-0726-022451081)
Guo C, Ning X, Zhang J, Zhang C, Wang J, Su L, Han J, Ma N (2023) Ultraviolet B radiation induces oxidative stress and apoptosis in human lens epithelium cells by activating NF-κB signalling to down-regulate sodium vitamin C transporter 2 (SVCT2) expression. Cell Cycle 22(12):1450–1462. https://doi.org/10.1080/15384101.2023.2215084. (PMID: 10.1080/15384101.2023.221508437246402)
Hadidi M, Alfonso G, Raquel I, Albert I (2022) Photo-degradation of alfalfa saponins by UV–visible multi-wavelength irradiation. Food Sci Technol 154:112809. https://doi.org/10.1016/j.lwt.2021.112809. (PMID: 10.1016/j.lwt.2021.112809)
Hargreaves A, Taiwo FA, Duggan O, Kirk SH, Ahmad SI (2007) Near-ultraviolet photolysis of b-phenylpyruvic acid generates free radicals and results in DNA damage. J Photochem Photobiol, B 89:110–116. https://doi.org/10.4172/2161-1009.1000173. (PMID: 10.4172/2161-1009.100017317977740)
Huan Y, Yang Z, Xun L, Yongbing C, Shanzhou D, Rongying Z, Yong L, Lichen Y (2019) Recent advances on reactive oxygen species-responsive delivery and diagnosis system. Biomacromol 20(7):2441–2463. https://doi.org/10.1021/acs.biomac.9b00628. (PMID: 10.1021/acs.biomac.9b00628)
Hussein A, Elhassaneen Y (2014) Natural dye from red onion skins and applied in dyeing cotton fabrics for the production of women’s headwear resistance to ultraviolet radiation (UVR). J Am Sci 10(3):129–139.
Ichihashi M, Ueda M, Budiyanto A, Bito T, Oka M, Fukunaga M, Tsuru K, Horikawa T (2003) UV-induced skin damage. Toxicology 189:21–39. https://doi.org/10.1016/S0300-483X(03)00150-1. (PMID: 10.1016/S0300-483X(03)00150-112821280)
Juan CA, Pérez de la Lastra JM, Plou FJ, Pérez-Lebeña E (2021) The chemistry of reactive oxygen species (ROS) revisited: outlining their role in biological macromolecules (DNA, lipids and proteins) and induced pathologies. Int J Mol Sci 22(9):4642. https://doi.org/10.3390/ijms22094642. (PMID: 10.3390/ijms22094642339249588125527)
Juturu V, Bowman JP, Deshpande J (2016) Overall skin tone and skin-lightening-improving effects with oral supplementation of lutein and zeaxanthin isomers: a double-blind, placebo-controlled clinical trial. Clin Cosmet Investig Dermatol 9:325–332. https://doi.org/10.2147/CCID.S115519. (PMID: 10.2147/CCID.S115519277850835063591)
Kehm R, Baldensperger T, Raupbach J, Höhn A (2021) Protein oxidation - Formation mechanisms, detection and relevance as biomarkers in human diseases. Redox Biol 42:101901. https://doi.org/10.1016/j.redox.2021.101901. (PMID: 10.1016/j.redox.2021.101901337442008113053)
Kizil M, Kizil G, Yavuz M, Çeken B (2010) Protective activity of ethanol extract of three Achillea species against lipid peroxidation, protein oxidation and DNA damage in vitro. Acta Aliment 39:457–470. https://doi.org/10.1556/AAlim.39.2010.4.7. (PMID: 10.1556/AAlim.39.2010.4.7)
Malsawmtluangi C, Nath DK, Jamatia I, Ralte L, Zarzoliana E, Pachuau L (2013) Determination of sun protection factor (SPF) number of some aqueous herbal extracts. J App Pharm Sci 3(09):150–151. https://doi.org/10.7324/JAPS.2013.3925. (PMID: 10.7324/JAPS.2013.3925)
Mansur JS, Breder MNR, Mansur MCA, Azulay RD (1986) Determinação do fator de proteção solar por espectrofotometria. An Bras Dermatol 61:121–124.
Maoka T (2020) Carotenoids as natural functional pigments. J Nat Med 74(1):1–16. https://doi.org/10.1007/s11418-019-01364-x. (PMID: 10.1007/s11418-019-01364-x31588965)
Mathews-Roth MM, Pathak MA, Fitzpatrick TB, Harber LH, Kass EH (1977) Beta carotene therapy for erythropoietic protoporphyria and other photosensitivity diseases. Arch Dermatol 113(9):1229–1232. (PMID: 10.1001/archderm.1977.01640090077011900968)
Md Jaffri J (2023) Reactive oxygen species and antioxidant system in selected skin disorders. Malays J Med Sci 30(1):7–20. https://doi.org/10.21315/mjms2023.30.1.2. (PMID: 10.21315/mjms2023.30.1.2368751949984103)
Mitra R, Samanta AK, Chaudhuri S, Dutta D (2016) Impact of carbon source on β-cryptoxanthin production by Kocuria marina DAGII: a classical approach. Materials Today: Proceedings 3:3269–3275. https://doi.org/10.1016/j.matpr.2016.10.008. (PMID: 10.1016/j.matpr.2016.10.008)
Mitra R, Chaudhuri S, Dutta D (2017) Modelling the growth kinetics of Kocuria marina DAGII as a function of single and binary substrate during batch production of b-Cryptoxanthin. Bioprocess Biosyst Eng 40:99–113. https://doi.org/10.1007/s00449-016-1678-6. (PMID: 10.1007/s00449-016-1678-627628580)
Mortensen A, Skibsted LH (2000) Carotenoid photobleaching. Methods Enzymol 299:408–421. https://doi.org/10.1016/S0076-6879(99)99039-0. (PMID: 10.1016/S0076-6879(99)99039-0)
Mueller L, Boehm V (2011) Antioxidant activity of β-carotene compounds in different in-vitro assays. Molecules 16:1055–1069. https://doi.org/10.3390/molecules16021055. (PMID: 10.3390/molecules1602105521350393)
Mukherjee T, Bose S, Mukhopadhyay SK (2017) Antioxidant properties of the carotenoid extracts of three Deinococcus-Thermus phylum bacteria Meiothermus sp. strains RP and TP and Thermus sp. strain YY from Paniphala hot spring. Nutrire. https://doi.org/10.1186/s41110-017-0032-3. (PMID: 10.1186/s41110-017-0032-3)
Nacional LM, Kang SJ, Choi BD (2011) Antioxidative activity of carotenoids in Mideodeok Styela clava. Fish Aquat Sci 14(4):243–249. https://doi.org/10.5657/FAS.2011.0243. (PMID: 10.5657/FAS.2011.0243)
Nakai K, Tsuruta D (2021) What are reactive oxygen species, free radicals, and oxidative stress in skin diseases. Int J Mol Sci 22(19):10799. https://doi.org/10.3390/ijms221910799. (PMID: 10.3390/ijms221910799346391398509443)
Nini L, Ji X, Mukherjee S, Yang B, Ren Y, Wang C, Chen Y (2023) A Bioinspired skin UV filter with broadband UV protection, photostability, and resistance to oxidative damage. ACS Appl Mater Interfaces. https://doi.org/10.1021/acsami.2c19773. (PMID: 10.1021/acsami.2c19773)
Oviedo-Solís CI, Sandoval-Salazar C, Lozoya-Gloria E, Maldonado-Aguilera GA, Aguilar-Zavala H, Beltrán-Campos V, Pérez-Vázquez V, Ramírez-Emiliano J (2017) Ultraviolet light-C increases antioxidant capacity of the strawberry (Fragaria x ananassa) in vitro and in high-fat diet-induced obese rats. Food Sci Nutr 5(5):1004–1014. https://doi.org/10.1002/fsn3.487. (PMID: 10.1002/fsn3.487289480185608977)
Patki JM, Singh S, Singh S, Padmadas N, Dasgupta D (2021) Analysis of the applicative potential of pigments extracted from bacterial isolates of mangrove soil as topical UV protectants. Brazil J Pharm Sci 57:e19127. https://doi.org/10.1590/s2175-97902020000419127. (PMID: 10.1590/s2175-97902020000419127)
Pizzino G, Irrera N, Cucinotta M, Pallio G, Mannino F, Arcoraci V, Squadrito F, Altavilla D, Bitto A (2017) Oxidative stress: harms and benefits for human health. Oxid Med Cell Longev 2017:8416763. https://doi.org/10.1155/2017/8416763. (PMID: 10.1155/2017/8416763288195465551541)
Rastogi RP, Singh SP, Incharoensakdi A, Häder DP, Sinha RP (2014) Ultraviolet radiation-induced generation of reactive oxygen species, DNA damage and induction of UV-absorbing compounds in the cyanobacterium Rivularia sp. HKAR-4. S Afr J Bot 90:163–169. https://doi.org/10.1016/j.sajb.2013.11.006. (PMID: 10.1016/j.sajb.2013.11.006)
Reji JE, Mathew L (2023) Plant Resources and Functional Foods. In: Sukumaran ST, TR, K (eds) Conservation and Sustainable Utilization of Bioresources. Sustainable Development and Biodiversity. Springer, Singapore.
Sarniak A, Lipińska J, Tytman K, Lipińska S (2016) Endogenous mechanisms of reactive oxygen species (ROS) generation. Postepy Hig Med Dosw 70:1150–1165. https://doi.org/10.5604/17322693.1224259. (PMID: 10.5604/17322693.1224259)
Sen Gupta S, Ghosh M (2013) In vitro antioxidative evaluation of α- and β-carotene. J Anal Methods Chem. https://doi.org/10.1155/2013/351671. (PMID: 10.1155/2013/351671243249163845665)
Shi G, Kim H, Koo S (2022) Oxo-carotenoids as efficient superoxide radical scavengers. Antioxidants 11:1525. https://doi.org/10.3390/antiox11081525. (PMID: 10.3390/antiox11081525360092449405038)
Spencer D, Rachel O, Linli Z, Liyuan J, Yuhang Z, Ana LK (2018) Natural antioxidants: multiple mechanisms to protect skin from solar radiation. Front Pharmacol 9:392. https://doi.org/10.3389/fphar.2018. (PMID: 10.3389/fphar.2018)
Sy C, Caris-Veyrat C, Dufour C, Boutaleb M, Borelcde P, Dangles O (2013) Inhibition of iron-induced lipid peroxidation by newly identified bacterial carotenoids in model gastric conditions: comparison with common carotenoids. Food Funct. https://doi.org/10.1039/c3fo30334a. (PMID: 10.1039/c3fo30334a23411789)
Tan C, Xue J, Lou X, Abbas S, Guan Yu, Feng B, Zhang X, Xia S (2014) Liposomes as delivery systems for carotenoids: Comparative studies of loading ability, storage stability and in vitro release. Food Funct. https://doi.org/10.1039/c3fo60498e. (PMID: 10.1039/c3fo60498e24714683)
Tian B, Xu Z, Sun Z, Lin J, Hua Y (2007) Evaluation of the antioxidant effects of carotenoids from Deinococcus radiodurans through targeted mutagenesis, chemiluminescence, and DNA damage analyses. Biochem Biophys Acta 1770(6):902–911. https://doi.org/10.1016/j.bbagen.2007.01.016. (PMID: 10.1016/j.bbagen.2007.01.01617368731)
Tshidino SC, Montsho N (2017) Antioxidant and hepatoprotective potentials of Bauhinia Variegata seeds against ferric chloride –induced lipid peroxidation in chicken liver homogenate. Afr J Tradit Complement Altern Med 14(5):219–230. (PMID: 10.21010/ajtcam.v14i5.25)
Tulay AC, Aslanturk OS (2010) Evaluation of cytotoxicity and genotoxicity of Inula viscosa leaf extracts with allium test. J Biomed Biotechnol. https://doi.org/10.1155/2010/189252. (PMID: 10.1155/2010/189252)
Vitiello G, Serpe L, Blázquez-Castro A (2021) The role of reactive oxygen species in chemical and biochemical processes. Front Chem 9:636245. https://doi.org/10.3389/fchem.2021.642523. (PMID: 10.3389/fchem.2021.642523)
Wang PW, Hung YC, Lin TY, Fang JY, Yang PM, Chen MH, Pan TL (2019) Comparison of the biological impact of UVA and UVB upon the skin with functional proteomics and immunohistochemistry. Antioxidants 8:569. https://doi.org/10.3390/antiox8120569. (PMID: 10.3390/antiox8120569317569386943602)
Wanjala GW, Onyango A, Onyango C, Makayoto M (2017) Reactive oxygen species (ROS) generation, impacts on tissue oxidation and dietary management of non-communicable diseases: A review. Afr J Biochem Res 11(12):79–90. https://doi.org/10.5897/AJBR2017.0967. (PMID: 10.5897/AJBR2017.0967)
Yadav DK, Kumar S, Choi EH, Chaudhary S, Kim MH (2019) Molecular dynamic simulations of oxidized skin lipid bilayer and permeability of reactive oxygen species. Sci Rep 9:4496. https://doi.org/10.1038/s41598-019-40913-y. (PMID: 10.1038/s41598-019-40913-y308726936418262)
Yang JW, Fan GB, Tan F, Kong HM, Liu Q, Zou Y, Tan YM (2023) The role and safety of UVA and UVB in UV-induced skin erythema. Front Med 10:1163697. https://doi.org/10.3389/fmed.2023.1163697. (PMID: 10.3389/fmed.2023.1163697)
Yong KS, Sung WK (2022) Recent advances in polymeric drug delivery systems. Biomater Res 24:12. https://doi.org/10.1186/s40824-020-00190-7. (PMID: 10.1186/s40824-020-00190-7)
Zhang G, Zhu B, Nakamura Y, Shimoishi Y, Murata Y (2008) Structure-dependent photodegradation of carotenoids accelerated by dimethyl tetrasulfide under UVA irradiation. Biosci Biotechnol Biochem 72(8):2176–2183. https://doi.org/10.1271/bbb.80251. (PMID: 10.1271/bbb.8025118685214)
Zhang B, Pan C, Feng C, Yan C, Yu Y, Chen Z, Guo C, Wang X (2022) Role of mitochondrial reactive oxygen species in homeostasis regulation. Redox Rep 27(1):45–52. https://doi.org/10.1080/13510002.2022.2046423. (PMID: 10.1080/13510002.2022.2046423352132918890532)
فهرسة مساهمة: Keywords: Antioxidant; Genotoxicity; Kocuria marina sp; Photo-protection; Reactive oxygen species
المشرفين على المادة: 0 (Antioxidants)
0 (Reactive Oxygen Species)
0 (Beta-Cryptoxanthin)
7YNJ3PO35Z (Hydrogen)
تواريخ الأحداث: Date Created: 20230916 Date Completed: 20230918 Latest Revision: 20231009
رمز التحديث: 20231009
DOI: 10.1007/s11274-023-03747-5
PMID: 37715879
قاعدة البيانات: MEDLINE
الوصف
تدمد:1573-0972
DOI:10.1007/s11274-023-03747-5