دورية أكاديمية

FXII contact activation products have an inhibitory effect on αFXIIa.

التفاصيل البيبلوغرافية
العنوان: FXII contact activation products have an inhibitory effect on αFXIIa.
المؤلفون: Xu LC; Department of Surgery, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA., Siedlecki CA; Department of Surgery, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA.; Department of Bioengineering, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA.
المصدر: Journal of biomedical materials research. Part A [J Biomed Mater Res A] 2024 Aug; Vol. 112 (8), pp. 1213-1223. Date of Electronic Publication: 2023 Sep 22.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: John Wiley & Sons Country of Publication: United States NLM ID: 101234237 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1552-4965 (Electronic) Linking ISSN: 15493296 NLM ISO Abbreviation: J Biomed Mater Res A Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Hoboken, NJ : John Wiley & Sons, c2002-
مواضيع طبية MeSH: Wettability*, Humans ; Hydrophobic and Hydrophilic Interactions ; Factor XIIa/metabolism ; Factor XIIa/antagonists & inhibitors ; Prekallikrein/metabolism ; Glass/chemistry ; Blood Coagulation/drug effects ; Factor XII/metabolism ; Factor XII/antagonists & inhibitors ; Silanes/chemistry ; Surface Properties
مستخلص: It is accepted that the contact activation complex of the intrinsic pathway of blood coagulation cascade produces active enzymes that lead to plasma coagulation following biomaterial contact. In this study, FXII was activated through contact with hydrophilic glass beads and hydrophobic octadecyltrichlorosilane-modified glass beads from neat buffer solutions. These FXII contact activation products generated from material interaction were found to suppress the procoagulant activity of exogenous αFXIIa, and this inhibition was dependent on surface wettability and the concentration of exogenous αFXIIa. Higher relative inhibition rates were generally observed at low concentrations of αFXIIa (1-2 μg/mL) while both hydrophobic and hydrophilic materials showed similar inhibition levels (~39%) at high concentrations of αFXIIa (20 μg/mL). The presence of prekallikrein in the activation system increased the amount of FXIIa produced during FXII contact activation, and also suppressed the apparent levels of inhibitors on hydrophilic surfaces, while having no effect on apparent levels of inhibitors on hydrophobic surface. The combination of FXII contact activation products and activator surfaces was found to dramatically increase inhibition of αFXIIa activity compared to the activation products alone, regardless of activator surface wettability and the presence of prekallikrein. This finding of inhibitors in the suite of proteins generated by contact activation provides additional knowledge into the complex series of interactions that occur when plasma comes into contact with material surfaces.
(© 2023 The Authors. Journal of Biomedical Materials Research Part A published by Wiley Periodicals LLC.)
References: Labarrere CA, Dabiri AE, Kassab GS. Thrombogenic and inflammatory reactions to biomaterials in medical devices. Front Bioeng Biotechnol. 2020;8(123).
Jaffer IH, Weitz JI. The blood compatibility challenge. Part 1: blood‐contacting medical devices: the scope of the problem. Acta Biomater. 2019;94:2‐10.
Lin L, Wu M, Zhao J. The initiation and effects of plasma contact activation: an overview. Int J Hematol. 2017;105(3):235‐243.
Pokhilko AV, Ataullakhanov FI. Contact activation of blood coagulation: trigger properties and hysteresis hypothesis: kinetic recognition of foreign surfaces upon contact activation of blood coagulation: a hypothesis. J Theor Biol. 1998;191(2):213‐219.
Yan Y, Xu LC, Vogler EA, Siedlecki CA. Contact activation by the intrinsic pathway of blood plasma coagulation. In: Siedlecki CA, ed. Hemocompatibility of Biomaterials for Clinical Applications. Woodhead Publishing; 2018:3‐28.
Furie B, Furie BC. Mechanisms of thrombus formation. N Engl J Med. 2008;359(9):938‐949.
Gorbet MB, Sefton MVMV. Biomaterial‐associated thrombosis: roles of coagulation factors, complement, platelets and leukocytes. Biomaterials. 2004;25(26):5681‐5703.
Vogler EA, Siedlecki CA. Contact activation of blood‐plasma coagulation. Biomaterials. 2009;30(10):1857‐1869.
Maas C, Renné T. Coagulation factor XII in thrombosis and inflammation. Blood. 2018;131(17):1903‐1909.
Naudin C, Burillo E, Blankenberg S, Butler L, Renné T. Factor XII contact activation. Semin Thromb Hemost. 2017;43(8):814‐826.
Shamanaev A, Litvak M, Gailani D. Recent advances in factor XII structure and function. Curr Opin Hematol. 2022;29(5):233‐243.
Kenne E, Nickel KF, Long AT, et al. Factor XII: a novel target for safe prevention of thrombosis and inflammation. J Intern Med. 2015;278(6):571‐585.
Nickel KF, Long AT, Fuchs TA, Butler LM, Renné T. Factor XII as a therapeutic target in thromboembolic and inflammatory diseases. Arterioscler Thromb Vasc Biol. 2017;37(1):13‐20.
Weitz JI. Factor XI and factor XII as targets for new anticoagulants. Thromb Res. 2016;141:S40‐S45.
Samuel M, Pixley RA, Villanueva MA, Colman RW, Villanueva GB. Human factor XII (Hageman factor) autoactivation by dextran sulfate—circular dichroism, fluorescence, and ultraviolet difference spectroscopic studies. J Biol Chem. 1992;267(27):19691‐19697.
Tankersley DL, Finlayson JS. Kinetics of activation and autoactivation of human factor XII. Biochemistry. 1984;23(2):273‐279.
Fujikawa K, Heimark RL, Kurachi K, Davie EW. Activation of bovine factor XII (Hageman factor) by plasma kallikrein. Biochemistry. 1980;19(7):1322‐1330.
Litvak M, Shamanaev A, Zalawadiya S, et al. Titanium is a potent inducer of contact activation: implications for intravascular devices. J Thromb Haemost. 2023;21(5):1200‐1213.
Griffin JH. Role of surface in surface‐dependent activation of Hageman factor (blood coagulation factor XII). Proc Natl Acad Sci. 1978;75(4):1998‐2002.
Wiggins RC, Cochrane CC. The autoactivation of rabbit Hageman factor. J Exp Med. 1979;150(5):1122‐1133.
Miller G, Silverberg M, Kaplan AP. Autoactivatability of human Hageman factor (factor XII). Biochem Biophys Res Commun. 1980;92(3):803‐810.
Chatterjee K, Guo Z, Vogler EA, Siedlecki CA. Contributions of contact activation pathways of coagulation factor XII in plasma. J Biomed Mater Res A. 2009;90(1):27‐34.
Zhuo R, Vogler EA. Practical application of a chromogenic FXIIa assay. Biomaterials. 2006;27(28):4840‐4845.
Dunn JT, Silverberg M, Kaplan AP. The cleavage and formation of activated human Hageman factor by autodigestion and by kallikrein. J Biol Chem. 1982;257(4):1779‐1784.
Tans G, Rosing J, Berrettini M, Lammle B, Griffin JH. Autoactivation of human plasma prekallikrein. J Biol Chem. 1987;262(23):11308‐11314.
Griep MA, Fujikawa K, Nelsestuen GL. Possible basis for the apparent surface selectivity of the contact activation of human blood coagulation factor XII. Biochemistry. 1986;25(21):6688‐6694.
Mitropoulos KA. High affinity binding of factor XIIa to an electronegative surface controls the rates of factor XII and prekallikrein activation in vitro. Thromb Res. 1999;94(2):117‐129.
Vogler EA, Graper JC, Harper GR, Sugg HW, Lander LM, Brittain WJ. Contact activation of the plasma coagulation cascade. I. Procoagulant surface chemistry and energy. J Biomed Mater Res. 1995;29(8):1005‐1016.
Vogler EA, Graper JC, Sugg HW, Lander LM, Brittain WJ. Contact activation of the plasma coagulation cascade. II. Protein adsorption to procoagulant surfaces. J Biomed Mater Res. 1995;29(8):1017‐1028.
Zhuo R, Siedlecki CA, Vogler EA. Autoactivation of blood factor XII at hydrophilic and hydrophobic surfaces. Biomaterials. 2006;27(24):4325‐4332.
Golas A, Parhi P, Dimachkie ZO, Siedlecki CA, Vogler EA. Surface‐energy dependent contact activation of blood factor XII. Biomaterials. 2010;31(6):1068‐1079.
Yeh C‐HJ, Dimachkie ZO, Golas A, Cheng A, Parhi P, Vogler EA. Contact activation of blood plasma and factor XII by ion‐exchange resins. Biomaterials. 2012;33(1):9‐19.
Golas A, Yeh C‐HJ, Pitakjakpipop H, Siedlecki CA, Vogler EA. A comparison of blood factor XII autoactivation in buffer, protein cocktail, serum, and plasma solutions. Biomaterials. 2013;34(3):607‐620.
Chatterjee K, Vogler EA, Siedlecki CA. Procoagulant activity of surface‐immobilized Hageman factor. Biomaterials. 2006;27(33):5643‐5650.
Golas A, Yeh C‐HJ, Siedlecki CA, Vogler EA. Amidolytic, procoagulant, and activation‐suppressing proteins produced by contact activation of blood factor XII in buffer solution. Biomaterials. 2011;32(36):9747‐9757.
Zhuo R, Siedlecki CA, Vogler EA. Competitive‐protein adsorption in contact activation of blood factor XII. Biomaterials. 2007;28(30):4355‐6439.
van der Kamp KWHJ, van Oeveren W. Factor XII fragment and kallikrein generation in plasma during incubation with biomaterials. J Biomed Mater Res. 1994;28(3):349‐352.
van der Kamp KWHJ, Hauch KD, Feijen J, Horbett TA. Contact activation during incubation of five different polyurethanes or glass in plasma. J Biomed Mater Res. 1995;29(10):1303‐1306.
Shamanaev A, Ivanov I, Sun M‐F, et al. Model for surface‐dependent factor XII activation: the roles of factor XII heavy chain domains. Blood Adv. 2022;6(10):3142‐3154.
Guo Z, Bussard KM, Chatterjee K, Miller R, Vogler EA, Siedlecki CA. Mathematical modeling of material‐induced blood plasma coagulation. Biomaterials. 2006;27(5):796‐806.
Chatterjee K, Thornton JL, Bauer JW, Vogler EA, Siedlecki CA. Moderation of prekallkrein‐factor XII interactions in surface activation of coagulation by protein‐adsorption competition. Biomaterials. 2009;30(28):4915‐4920.
Revak SD, Cochrane CG, Bouma BN, Griffin JH. Surface and fluid phase activities of 2 forms of activated Hageman factor produced during contact activation of plasma. J Exp Med. 1978;147(3):719‐729.
Golas A, Pitakjakpipop H, Rahn MS, Siedlecki CA, Vogler EA. Enzymes produced by autoactivation of blood factor XII in buffer. Biomaterials. 2015;37:1‐12.
Davie EW, Ratnoff OD. Waterfall sequence for intrinsic blood clotting. Science. 1964;145(3638):1310‐1312.
Macfarlane RG. An enzyme Cascade in the blood clotting mechanism, and its function as a biochemical amplifier. Nature. 1964;202(4931):498‐499.
معلومات مُعتمدة: R01 HL069965 United States HL NHLBI NIH HHS; RO1HL069965 United States HL NHLBI NIH HHS; RO1HL069965 United States HL NHLBI NIH HHS
فهرسة مساهمة: Keywords: biomaterials surfaces; blood‐materials interactions; coagulation
المشرفين على المادة: EC 3.4.21.38 (Factor XIIa)
9055-02-1 (Prekallikrein)
9001-30-3 (Factor XII)
0 (Silanes)
112-04-9 (octadecyltrichlorosilane)
تواريخ الأحداث: Date Created: 20230922 Date Completed: 20240618 Latest Revision: 20240703
رمز التحديث: 20240703
مُعرف محوري في PubMed: PMC10957503
DOI: 10.1002/jbm.a.37612
PMID: 37737653
قاعدة البيانات: MEDLINE
الوصف
تدمد:1552-4965
DOI:10.1002/jbm.a.37612