دورية أكاديمية

Material of choice for non-invasive treatment of dentin caries: An in vitro study using natural carious lesions.

التفاصيل البيبلوغرافية
العنوان: Material of choice for non-invasive treatment of dentin caries: An in vitro study using natural carious lesions.
المؤلفون: Kongsomjit M; Department of Pediatric Dentistry, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand., Punyanirun K; Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand., Tasachan W; Department of Pediatric Dentistry, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand., Hamba H; Department of Operative Dentistry, Cariology and Pulp Biology, Tokyo Dental College, Tokyo, Japan., Tagami J; Department of Cariology and Operative Dentistry, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.; Department of Operative Dentistry, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand., Trairatvorakul C; Department of Pediatric Dentistry, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand., Thanyasrisung P; Department of Microbiology and Center of Excellence on Oral Microbiology and Immunology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand.
المصدر: International journal of dental hygiene [Int J Dent Hyg] 2024 Aug; Vol. 22 (3), pp. 689-695. Date of Electronic Publication: 2023 Sep 25.
نوع المنشور: Journal Article; Comparative Study
اللغة: English
بيانات الدورية: Publisher: Blackwell Pub Country of Publication: England NLM ID: 101168070 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1601-5037 (Electronic) Linking ISSN: 16015029 NLM ISO Abbreviation: Int J Dent Hyg Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Oxford [Eng.] : Blackwell Pub., c2003-
مواضيع طبية MeSH: Dental Caries* , Fluorides, Topical*/therapeutic use , Silver Compounds*/therapeutic use , Tooth Remineralization*/methods , Quaternary Ammonium Compounds*/therapeutic use , Quaternary Ammonium Compounds*/pharmacology , Cariostatic Agents*/therapeutic use , Cariostatic Agents*/pharmacology , Glass Ionomer Cements*/therapeutic use , X-Ray Microtomography*/methods, Humans ; In Vitro Techniques ; Dentin/drug effects ; Toothpastes/therapeutic use ; Hydrogen-Ion Concentration ; Tooth, Deciduous
مستخلص: Introduction: In community settings with limited dental personnel and equipment, and in an era when the aerosol transmission of infectious agents is on the rise, a non-invasive approach to caries management is critical. To provide information on non-invasive material selection, the aim of this study was to compare the remineralization effect of commonly used fluoride-containing materials, adjunctive to the everyday use of fluoride toothpaste (F-toothpaste), on primary tooth natural dentin caries.
Methods: Fifty-five specimens were randomly divided into five groups: 38% silver diamine fluoride (SDF), 5% fluoride varnish (F-varnish), glass-ionomer cement (GIC), deionized water (DW) with F-toothpaste slurry, and DW as a control group (n = 11). The lesion depth and mineral density were measured before and after bacterial pH-cycling using micro-computed tomography. The percentage of mineral density change (%MDchange) was quantified. The dependent t-test, Wilcoxon-Signed-Rank Test, and one way ANOVA with Bonferroni correction were used to analyse the data.
Results: SDF application reduced lesion depth from 844.6 to 759.1 μm (p < 0.045) while increasing mineral density from 551.4 to 763.0 mgHA/cm 3 (p < 0.003). Only mineral density rose from 600.2 to 678.4 mgHA/cm 3 (p < 0.013) when GIC was used. The other groups showed no difference. The highest %MDchange was also found after SDF treatment (49.7%, p < 0.05), whereas GIC (17.2%, p < 0.05) presented a higher percentage than the F-varnish (2.0%), F-toothpaste (-1.1%) and no-treatment groups (-1.4%).
Conclusion: In this in vitro study, where the pH of cycling was almost neutral, using SDF as an adjunct to F-toothpaste resulted in the highest remineralization compared with other remineralizing materials.
(© 2023 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.)
References: Marinho VC, Higgins JP, Sheiham A, Logan S. Fluoride toothpastes for preventing dental caries in children and adolescents. Cochrane Database Syst Rev. 2003;(1):CD002278. doi:10.1002/14651858.CD002278.
American Academy of Pediatric Dentistry. Fluoride Therapy. The Reference Manual of Pediatric Dentistry; 2020.
FDI World Dental Federation. Oral Health Worldwide. A report by FDI World Dental Federation. Accessed August 8, 2020. https://www.fdiworlddental.org/sites/default/files/2020‐11/2015_wohd‐whitepaper‐oral_health_worldwide.pdf.
Souza JGS, Souza SE, Noronha MDS, Ferreira EFE, Martins A. Impact of untreated dental caries on the daily activities of children. J Public Health Dent. 2018;78(3):197‐202. doi:10.1111/jphd.12259.
Al‐Halabi M, Salami A, Alnuaimi E, Kowash M, Hussein I. Assessment of paediatric dental guidelines and caries management alternatives in the post COVID‐19 period. A critical review and clinical recommendations. Eur Arch Paediatr Dent. 2020;21(5):543‐556. doi:10.1007/s40368-020-00547-5.
Saber AM, El‐Housseiny AA, Alamoudi NM. Atraumatic restorative treatment and interim therapeutic restoration: a review of the literature. Dent J. 2019;7(1). doi:10.3390/dj7010028.
Mijan MC, Frencken JE, Schwass DR, Chaves SB, Leal SC. Microcomputed tomography evaluation of dentine mineral concentration in primary molars managed by three treatment protocols. Caries Res. 2018;52(4):303‐311. doi:10.1159/000485983.
Zhi QH, Lo EC, Lin HC. Randomized clinical trial on effectiveness of silver diamine fluoride and glass ionomer in arresting dentine caries in preschool children. J Dent. 2012;40(11):962‐967. doi:10.1016/j.jdent.2012.08.002.
Duangthip D, Chu CH, Lo EC. A randomized clinical trial on arresting dentine caries in preschool children by topical fluorides—18 month results. J Dent. 2016;44:57‐63. doi:10.1016/j.jdent.2015.05.006.
Schmoeckel J, Gorseta K, Splieth CH, Juric H. How to intervene in the caries process: early childhood caries—a systematic review. Caries Res. 2020;54(2):102‐112. doi:10.1159/000504335.
Tedesco TK, Gimenez T, Floriano I, et al. Scientific evidence for the management of dentin caries lesions in pediatric dentistry: a systematic review and network meta‐analysis. PloS One. 2018;13(11):e0206296. doi:10.1371/journal.pone.0206296.
Krithikadatta J, Gopikrishna V, Datta M. CRIS guidelines (checklist for reporting In‐vitro studies): a concept note on the need for standardized guidelines for improving quality and transparency in reporting in‐vitro studies in experimental dental research. J Conserv Dent. 2014;17(4):301‐304. doi:10.4103/0972-0707.136338.
Dias GF, Chibinski ACR, Santos FA, Hass V, Alves FBT, Wambier DS. The hardness and chemical changes in demineralized primary dentin treated by fluoride and glass ionomer cement. Rev Odontol UNESP. 2016;45:33‐40.
Featherstone JD, ten Cate JM, Shariati M, Arends J. Comparison of artificial caries‐like lesions by quantitative microradiography and microhardness profiles. Caries Res. 1983;17(5):385‐391. doi:10.1159/000260692.
Nyvad B, Baelum V. Nyvad criteria for caries lesion activity and severity assessment: a validated approach for clinical management and research. Caries Res. 2018;52(5):397‐405. doi:10.1159/000480522.
Queiroz CS, Hara AT, Paes Leme AF, Cury JA. pH‐cycling models to evaluate the effect of low fluoride dentifrice on enamel de‐ and remineralization. Braz Dent J. 2008;19:21‐27.
American Dental Association Council on Scientific Affairs. Fluoride toothpaste use for young children. J Am Dent Assoc. 2014;145(2):190‐191. doi:10.14219/jada.2013.47.
Fontana M, Dunipace AJ, Gregory RL, et al. An in vitro microbial model for studying secondary caries formation. Caries Res. 1996;30(2):112‐118. doi:10.1159/000262146.
Klein U, Kanellis MJ, Drake D. Effects of four anticaries agents on lesion depth progression in an in vitro caries model. Pediatr Dent. 1999;21(3):176‐180.
Mishra P, Palamara JE, Tyas MJ, Burrow MF. Effect of static loading of dentin beams at various pH levels. Calcif Tissue Int. 2006;79(6):416‐421. doi:10.1007/s00223-005-0271-9.
Liu Y, Hsu CY, Teo CM, Teoh SH. Subablative Er:YAG laser effect on enamel demineralization. Caries Res. 2013;47(1):63‐68. doi:10.1159/000343573.
Walker GD, Cai F, Shen P, et al. Consumption of milk with added casein phosphopeptide‐amorphous calcium phosphate remineralizes enamel subsurface lesions in situ. Aust Dent J. 2009;54(3):245‐249. doi:10.1111/j.1834-7819.2009.01127.x.
Arends J, ten Bosch JJ. Demineralization and remineralization evaluation techniques. J Dent Res. 1992;71:924‐928.
Arends J, Dijkman T, Christoffersen J. Average mineral loss in dental enamel during demineralization. Caries Res. 1987;21(3):249‐254. doi:10.1159/000261028.
Zander V, Chan D, Sadr A. Microcomputed tomography evaluation of root dentin caries prevention by topical fluorides and potassium iodide. Sensors. 2019;19(4). doi:10.3390/s19040874.
Uemura R, Miura J, Ishimoto T, et al. UVA‐activated riboflavin promotes collagen crosslinking to prevent root caries. Sci Rep. 2019;9(1):1252. doi:10.1038/s41598-018-38137-7.
Zeng L, Zeng Y, Zhou Y, et al. Diet and lifestyle habits associated with caries in deciduous teeth among 3‐ to 5‐year‐old preschool children in Jiangxi province, China. BMC Oral Health. 2018;18(1):224. doi:10.1186/s12903-018-0686-0.
Soltani R, Eslami AA, Akhlaghi N, Sharifirad G, Alipoor M, Mahaki B. Toothbrushing frequency among 4‐6‐year‐old Iranian children and associated maternal attitude and sociobehavioral factors. Dent Res J. 2017;14(1):50‐56. doi:10.4103/1735-3327.201137.
Pullishery F, Shenoy Panchmal G, Shenoy R. Parental attitudes and tooth brushing habits in preschool children in Mangalore, Karnataka: a cross‐sectional study. Int J Clin Pediatr Dent. 2013;6(3):156‐160. doi:10.5005/jp-journals-10005-1210.
Lo EC, Chu CH, Lin HC. A community‐based caries control program for pre‐school children using topical fluorides: 18‐month results. J Dent Res. 2001;80(12):2071‐2074. doi:10.1177/00220345010800120901.
Punyanirun K, Yospiboonwong T, Kunapinun T, Thanyasrisung P, Trairatvorakul C. Silver diamine fluoride remineralized artificial incipient caries in permanent teeth after bacterial pH‐cycling in‐vitro. J Dent. 2018;69:55‐59. doi:10.1016/j.jdent.2017.09.005.
Nantanee R, Santiwong B, Trairatvorakul C, Hamba H, Tagami J. Silver diamine fluoride and glass ionomer differentially remineralize early caries lesions, in situ. Clin Oral Investig. 2016;20(6):1151‐1157. doi:10.1007/s00784-015-1603-4.
Sulyanto RM, Kang M, Srirangapatanam S, et al. Biomineralization of dental tissues treated with silver diamine fluoride. J Dent Res. 2021;100(10):1099‐1108. doi:10.1177/00220345211026838.
Zhao IS, Gao SS, Hiraishi N, et al. Mechanisms of silver diamine fluoride on arresting caries: a literature review. Int Dent J. 2018;68(2):67‐76. doi:10.1111/idj.12320.
Alsaleh MM, Sabbarini JM, Al‐Batayneh OB, Khader YS. Changes in behavior management and treatment modalities in pediatric dentistry during COVID‐19 pandemic. Int J Clin Pediatr Dent. 2020;13(Suppl 1):S125‐S131. doi:10.5005/jp-journals-10005-1885.
Nakajo K, Imazato S, Takahashi Y, Kiba W, Ebisu S, Takahashi N. Fluoride released from glass‐ionomer cement is responsible to inhibit the acid production of caries‐related oral streptococci. Dent Mater. 2009;25(6):703‐708. doi:10.1016/j.dental.2008.10.014.
Pinheiro SL, Gallassi PC, Saldanha TC, Bincelli IN, Barros PP, Silva GH. Repairing collagen in dentin carious lesions. Influence of sealing the material: a morphometric study. J Clin Pediatr Dent. 2010;34(3):223‐228.
Wang SP, Ge Y, Zhou XD, et al. Effect of anti‐biofilm glass‐ionomer cement on Streptococcus mutans biofilms. Int J Oral Sci. 2016;8(2):76‐83. doi:10.1038/ijos.2015.55.
ten Cate JM, van Duinen RN. Hypermineralization of dentinal lesions adjacent to glass‐ionomer cement restorations. J Dent Res. 1995;74(6):1266‐1271. doi:10.1177/00220345950740060501.
Hazelrigg CO, Dean JA, Fontana M. Fluoride varnish concentration gradient and its effect on enamel demineralization. Pediatr Dent. 2003;25(2):119‐126.
Ozgul BM, Orhan K, Oz FT. Micro‐computed tomographic analysis of progression of artificial enamel lesions in primary and permanent teeth after resin infiltration. J Oral Sci. 2015;57(3):177‐183. doi:10.2334/josnusd.57.177.
Chu CH, Lo EC, Lin HC. Effectiveness of silver diamine fluoride and sodium fluoride varnish in arresting dentin caries in Chinese pre‐school children. J Dent Res. 2002;81(11):767‐770. doi:10.1177/0810767.
Osmari D, de Oliveira Ferreira AC, de Carlo BM, et al. Micromorphological evaluation of dentin treated with different desensitizing agents. J Lasers Med Sci. 2013;4(3):140‐146.
Rirattanapong P, Vongsavan K, Saengsirinavin C, Pornmahala T. Effect of fluoride varnishes containing different calcium phosphate sources on mineralization of initial primary enamel lesions. Southeast Asian J Trop Med Public Health. 2014;45(6):1503‐1510.
Davies RM, Ellwood RP, Davies GM. The rational use of fluoride toothpaste. Int J Dent Hyg. 2003;1(1):3‐8. doi:10.1034/j.1601-5037.2003.00001.x.
معلومات مُعتمدة: Chulalongkorn University
فهرسة مساهمة: Keywords: deciduous tooth; dentin caries; silver diamine fluoride; tooth remineralization
المشرفين على المادة: 0 (Fluorides, Topical)
DDU19UEV1Y (silver diamine fluoride)
0 (Silver Compounds)
0 (Quaternary Ammonium Compounds)
0 (Cariostatic Agents)
0 (Glass Ionomer Cements)
0 (Toothpastes)
تواريخ الأحداث: Date Created: 20230925 Date Completed: 20240722 Latest Revision: 20240722
رمز التحديث: 20240722
DOI: 10.1111/idh.12765
PMID: 37746821
قاعدة البيانات: MEDLINE
الوصف
تدمد:1601-5037
DOI:10.1111/idh.12765