دورية أكاديمية

A study on the vertebral column of the dice snake Natrix tessellata (Serpentes, Natricidae) from Denizli (western Anatolia, Turkey).

التفاصيل البيبلوغرافية
العنوان: A study on the vertebral column of the dice snake Natrix tessellata (Serpentes, Natricidae) from Denizli (western Anatolia, Turkey).
المؤلفون: Akat Çömden E; Science Faculty, Biology Department, Zoology Section, Ege University, Bornova, Izmir, Turkey., Yenmiş M; Science Faculty, Biology Department, Zoology Section, Ege University, Bornova, Izmir, Turkey., Kytyr D; Institute of Theoretical and Applied Mechanics, Czech Academy of Sciences, Prague 9, Czech Republic., Ayaz D; Science Faculty, Biology Department, Zoology Section, Ege University, Bornova, Izmir, Turkey., Bayrakci Y; Science Faculty, Biology Department, Zoology Section, Ege University, Bornova, Izmir, Turkey.
المصدر: Anatomical record (Hoboken, N.J. : 2007) [Anat Rec (Hoboken)] 2024 May; Vol. 307 (5), pp. 1930-1942. Date of Electronic Publication: 2023 Sep 25.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: John Wiley & Sons Country of Publication: United States NLM ID: 101292775 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1932-8494 (Electronic) Linking ISSN: 19328486 NLM ISO Abbreviation: Anat Rec (Hoboken) Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Hoboken, NJ : John Wiley & Sons, 2007-
مواضيع طبية MeSH: Colubridae*, Animals ; Turkey ; X-Ray Microtomography ; Spine/diagnostic imaging ; Histological Techniques
مستخلص: The vertebral anatomy of snakes has attracted the attention of researchers for decades and numerous studies have been made for extinct and extant species. The present study investigated the morphological variations in vertebral structure among different vertebral regions in the dice snake Natrix tessellata, and provides a detailed anatomical and microstructural description of the vertebral column. Vertebrae were analyzed and compared using x-ray imaging, scanning electron microscopy, micro-computed tomography, and histological techniques. The vertebral column of N. tessellata is divided into three regions: precloacal, cloacal, and caudal. Unlike in many other tetrapods and snakes, the atlas of N. tessellata does not form a complete ring. It has a flat and roughly trilobate shape with a prominent middle lobe. The axis has two hypapophyses. The anterior precloacal region of the vertebral column has longer and more paddle-shaped hypapophyses, distinguishing it from the posterior and mid-trunk vertebrae. The anterior cloacal vertebrae have a short hypapophysis rather than a hemal keel, and the lymphapophysis extends outward, curving slightly. The cotyle and condyle of the caudal vertebrae exhibited a closer resemblance to a rounded shape, while the pleurapophysis extended ventrolaterally and curved ventrally near its distal end. Paired hemapophyses were present at the posterior-most point of the centrum instead of a hypapophysis. In light of previous fossil findings, our anatomical comparison of the vertebral and transverse processes indicates that the extant Natrix has a more flexible and less rigid spine than its ancestors. Overall, the vertebral differences among snake anatomical regions or taxa are a testament to the remarkable diversity and adaptability of these fascinating reptiles.
(© 2023 The Authors. The Anatomical Record published by Wiley Periodicals LLC on behalf of American Association for Anatomy.)
References: Alexander, A. A., & Gans, C. (1966). The pattern of dermal–vertebral correlation in snakes and amphibians. Zoologische Mededelingen, 41, 171–190.
Anderson, K., Strickland, S. M., & Warren, R. (2001). Hip and groin injuries in athletes. American Journal of Sports Medicine, 29, 521–533. https://doi.org/10.1177/03635465010290042501.
Buchholtz, E. A. (2011). Vertebral and rib anatomy in Caperea marginata: Implications for evolutionary patterning of the mammalian vertebral column. Marine Mammal Science, 27(2), 382–397. https://doi.org/10.1111/j.1748-7692.2010.00411.x.
Caldwell, M. W. (1999). Squamate phylogeny and the relationships of snakes and mosasauroids. Zoological Journal of the Linnean Society, 125(1), 115–147. https://doi.org/10.1111/j.1096-3642.1999.tb00587.x.
Caldwell, M. W. (2003). Without a leg to stand on: On the evolution and development of axial elongation and limblessness in tetrapods. Canadian Journal of Earth Sciences, 40, 573–588. https://doi.org/10.1139/e02-081.
Carmona, R., Alba, D. M., Delfino, M., Robles, J. M., Rotgers, C., Bertó Mengual, J. V., Balaguer, J., Galindo, J., & Moyà‐Solà, S. (2010). Snake fossil remains from the middle Miocene stratigraphic series of Abocador de can Mata (els Hostalets de Pierola, Catalonia, Spain). Cidaris, 30, 77–83.
Čerňanský, A., Szyndlar, Z., & Mörs, T. (2017). Fossil squamate faunas from the Neogene of Hambach (northwestern Germany). Palaeobiodiversity and Palaeoenvironments, 97, 329–354. https://doi.org/10.1007/s12549-016-0252-1.
Čerňanský, A., Yaryhin, O., Ciceková, J., Werneburg, I., Hain, M., & Klembara, J. (2019). Vertebral comparative anatomy and morphological differences in anguine lizards with a special reference to Pseudopus apodus. The Anatomical Record, 302(2), 232–257. https://doi.org/10.1002/ar.23944.
Chinchilla‐Barboza, M., Chiquillo‐Vergara, S., Delgado‐Álvarez, V., Gutiérrez‐Gutiérrez, S., Mora‐Aleman, J. S., Páez‐Padilla, J. G., Sanchez‐Bermudez, J., & Passos‐Pequeno, A. (2021). An anatomical and radiographic study on the vertebral column of the two‐toed sloth (Choloepus hoffmanni). Ciencias Veterinarias, 39(2), 1–18. https://doi.org/10.15359/rcv.39-2.2.
Codrea, V. A., Bordeianu, M., & Venczel, M. (2022). Amphibians and squamate reptiles from the late Miocene of Fălciu (eastern Romania). Palaeontologia Electronica, 25(2), 1–23. https://doi.org/10.26879/1156.
Dbrowski, Z., Martins, I. S., Tabarowski, Z., Witkowska‐Pelc, E., Morena, D. S., Spodaryk, K., & Podkowa, D. (2007). Haematopoiesis in snakes (Ophidia) in early postnatal development. Cell and Tissue Research, 328(2), 291–299. https://doi.org/10.1007/s00441-006-0303-4.
Gaffney, E. S. (1985). The cervical and caudal vertebrae of the cryptodiran turtle, Meiolania platyceps, from the Pleistocene of Lord Howe Island, Australia. American Museum Novitates, 2805, 1–29.
Galbusera, F., & Bassani, T. (2019). The spine: A strong, stable, and flexible structure with biomimetics potential. Biomimetics, 4(3), 60. https://doi.org/10.3390/biomimetics4030060.
Galis, F., Carrier, D. R., van Alphen, J., van Der Mije, S. D., Van Dooren, T. J., Metz, J. A., & ten Broek, C. M. (2014). Fast running restricts evolutionary change of the vertebral column in mammals. Proceedings of the National Academy of Sciences, 111(31), 11401–11406. https://doi.org/10.1073/pnas.1401392111.
Gans, C. (1970). How snakes move. Scientific American, 222(6), 82–99. https://www.jstor.org/stable/24925828.
Garnett, R. (2020). A comprehensive review of dual‐energy and multi‐spectral computed tomography. Clinical Imaging, 67, 160–169. https://doi.org/10.1016/j.clinimag.2020.07.030.
Georgalis, G., Villa, A., Martin, I., Vasilyan, D., & Delfino, M. (2019). Fossil amphibians and reptiles from the Neogene locality of Maramena (Greece), the most diverse European herpetofauna at the Miocene/Pliocene transition boundary. Palaeontologia Electronica, 22, 1–99. https://doi.org/10.26879/908.
Georgalis, G. L., & Szyndlar, Z. (2022). First occurrence of Psammophis (Serpentes) from Europe witnesses another Messinian herpetofaunal dispersal from Africa–biogeographic implications and a discussion of the vertebral morphology of psammophiid snakes. The Anatomical Record, 305(11), 3263–3282. https://doi.org/10.1002/ar.24892.
Georgalis, G. L., Villa, A., & Delfino, M. (2017). Fossil lizards and snakes from Ano Metochi–a diverse squamate fauna from the latest Miocene of northern Greece. Historical Biology, 29(6), 730–742. https://doi.org/10.1080/08912963.2016.1234619.
Hampton, P. M., Watson, J. A., & Meik, J. M. (2022). Heart position is associated with vertebral regionalization in two species of garter snakes (Thamnophis). Journal of Herpetology, 56(2), 229–233. https://doi.org/10.1670/21-036.
Head, J. J., & Polly, P. D. (2015). Evolution of the snake body form reveals homoplasy in amniote Hox gene function. Nature, 520(7545), 86–89. https://doi.org/10.5061/dryad.jq285.
Hoffstetter, R., & Gasc, J. P. (1969). Vertebrae and ribs of modern reptiles. In C. Gans, d.' A. Bellairs, & T. S. Parsons (Eds.), Biology of the Reptilia, volume 1, morphology A (pp. 201–310). Academic Press.
Holman, J. A. (2000). The fossil snakes of North America: Origin, evolution, distribution, paleoecology (p. 376). Indiana University Press.
Ikeda, T. (2007). A comparative morphological study of the vertebrae of snakes occurring in Japan and adjacent regions. Current Herpetology, 26(1), 13–34. https://doi.org/10.3105/1345-5834(2007)26[13:ACMSOT]2.0.CO;2.
Ivanov, M. (2002). The oldest known Miocene snake fauna from Central Europe: Merkur‐North locality, Czech Republic. Acta Palaeontologica Polonica, 47(3), 513–534.
Jandzik, D., & Bartík, I. (2004). Differences in morphology of the atlas‐axis complex in Natrix natrix and N. tessellata (Serpentes: Colubridae). Biologia, 15, 219–229.
Johnson, R. G. (1955). The adaptive and phylogenetic significance of vertebral form in snakes. Evolution, 9(4), 367–388. https://doi.org/10.2307/2405473.
Jurestovsky, D. J., Jayne, B. C., & Astley, H. C. (2020). Experimental modification of morphology reveals the effects of the zygosphene–zygantrum joint on the range of motion of snake vertebrae. Journal of Experimental Biology, 223, jeb216531. https://doi.org/10.1242/jeb.216531.
Laurenti, J. N. (1768). Specimen medicum, exhibens synopsin reptilium emendatam cum experimentis circa venena et antidota reptilium austracorum, quod authoritate et consensu (p. 217). Viennae, Joan Thomae.
Lawing, A. M., Head, J. J., & Polly, P. D. (2012). The ecology of morphology: The ecometrics of locomotion and macroenvironment in North American snakes. In J. Louys (Ed.), Paleontology in ecology and conservation (pp. 117–146). Springer Earth System Sciences. https://doi.org/10.1007/978-3-642-25038-5_7.
Lee, J. L., Thompson, A., & Mulcahy, D. G. (2016). Relationships between numbers of vertebrae, scale counts, and body size, with implications for taxonomy in nightsnakes (genus: Hypsiglena). Journal of Herpetology, 50(4), 616–620.
Lindell, L. E. (1994). The evolution of vertebral number and body size in snakes. Functional Ecology, 8(6), 708–719. https://doi.org/10.2307/2390230.
Lindsey, C. C. (1975). Pleomerism, the widespread tendency among related fish species for vertebral number to be correlated with maximum body length. Journal of the Fisheries Board of Canada, 32(12), 2453–2469. https://doi.org/10.1139/f75-283.
Loréal, E., Villa, A., Georgalis, G., & Delfino, M. (2020). Amphibians and reptiles from the late Miocene and early Pliocene of the Ptolemais area (Western Macedonia, Greece). Annales de Paléontologie, 106(3), 102407. https://doi.org/10.1016/j.annpal.2020.102407.
Martínez‐Silvestre, A., Marco, I., Rodriguez‐Dominguez, M. A., Lavin, S., & Cuenca, R. (2005). Morphology, cytochemical staining, and ultrastructural characteristics of the blood cells of the giant lizard of El Hierro (Gallotia simonyi). Research in Veterinary Science, 78(2), 127–134. https://doi.org/10.1016/j.rvsc.2004.07.009.
McCartney, J. A., Stevens, N. J., & O'Connor, P. M. (2014). The earliest Colubroid‐dominated snake fauna from Africa: Perspectives from the late Oligocene Nsungwe Formation of southwestern Tanzania. PLoS One, 9(3), e90415. https://doi.org/10.1371/journal.pone.0090415.
Miao, H., Zhao, H. J., Gao, F., & Gong, S. R. (2009). Implementation of FDK reconstruction algorithm in cone‐beam CT based on the 3D Shepp‐Logan model. In 2009 2nd international conference on biomedical engineering and informatics (pp. 1–5). IEEE. https://doi.org/10.1109/BMEI.2009.5304987.
Panjabi, M., Dvorak, J., Duranceau, J., Yamamoto, I., Gerber, M., Rauschning, W., & Bueff, H. U. (1988). Three‐dimensional movements of the upper cervical spine. Spine, 13, 726–730. https://doi.org/10.1097/00007632-198807000-00003.
Parmley, D., & Holman, J. A. (2007). Earliest fossil record of a pigmy rattlesnake (Viperidae: Sistrurus Garman). Journal of Herpetology, 41(1), 141–144. https://doi.org/10.1670/0022-1511(2007)41[141:EFROAP]2.0.CO;2.
Parmley, D., & Hunter, K. B. (2010). Fossil snakes of the Clarendonian (late Miocene) Pratt Slide local fauna of Nebraska, with the description of a new natricine colubrid. Journal of Herpetology, 44(4), 526–543. https://doi.org/10.1670/09-248.1.
Peyrot, S. M., Martin, B. L., & Harland, R. M. (2010). Lymph heart musculature is under distinct developmental control from lymphatic endothelium. Developmental Biology, 339(2), 429–438. https://doi.org/10.1016/j.ydbio.2010.01.002.
Romer, A. S. (1997). Osteology of the reptiles (p. 800). Krieger Pub. Co.
Sanger, T. J., & Gibson‐Brown, J. J. (2004). The developmental bases of limb reduction and body elongation in squamates. Evolution, 58(9), 2103–2106. https://doi.org/10.1111/j.0014-3820.2004.tb00494.x.
Sano‐Martins, S. I., Dabrowski, Z., Tabarowski, Z., Witkowska‐Pelc, E., Morena, D. D. S., & Spodaryk, K. (2002). Haematopoiesis and a new mechanism for the release of mature blood cells from the bone marrow into the circulation in snakes (Ophidia). Cell and Tissue Research, 310(1), 67–75. https://doi.org/10.1007/s00441-002-0557-4.
Scanlon, J. D., Lee, M. S. Y., & Archer, M. (2003). Mid‐tertiary elapid snakes (Squamata Colubroidea) from Riversleigh, northern Australia: Early steps in a continent‐wide adaptive radiation. Geobios, 36, 573–601. https://doi.org/10.1016/S0016-6995(03)00056-1.
Sherratt, E., Nash‐Hahn, T., Nankivell, J. H., Rasmussen, A. R., Hampton, P. M., & Sanders, K. L. (2022). Macroevolution in axial morphospace: Innovations accompanying the transition to marine environments in elapid snakes. Royal Society Open Science, 9(12), 221087. https://doi.org/10.1098/rsos.221087.
Smith, K. T. (2013). New constraints on the evolution of the snake clades Ungaliophiinae, Loxocemidae and Colubridae (Serpentes), with comments on the fossil history of erycine boids in North America. Zoologischer Anzeiger – A Journal of Comparative Zoology, 252(2), 157–182. https://doi.org/10.1016/j.jcz.2012.05.006.
Spadliński, Ł., Cecot, T., Majos, A., Stefańczyk, L., Pietruszewska, W., Wysiadecki, G., Topol, M., & Polguj, M. (2016). The epidemiological, morphological, and clinical aspects of the cervical ribs in humans. BioMed Research International, 2016, 8034613. https://doi.org/10.1155/2016/8034613.
Sumida, S. S. (1997). Locomotor features of taxa spanning the origin of amniotes. In S. S. Sumida & K. L. M. Martin (Eds.), Amniote origins: Completing the transition to land (pp. 353–398). Academic Press.
Sypeck, J., & Borysenko, M. (1988). Reptiles. In A. F. Rowley & N. A. Ratcliffe (Eds.), Vertebrate Blood Cells (pp. 211–256). Cambridge University Press.
Szyndlar, Z. (1984). Fossil snakes from Poland. Acta Zoologica Cracoviensia, 28, 1–156.
Szyndlar, Z. (1991). A review of Neogene and Quaternary snakes of central and eastern Europe. Part 11: Natricinae, Elapidae, Viperidae. Estudios Geológicos, 47(3–4), 237–266. https://doi.org/10.3989/egeol.91473-4422.
Szyndlar, Z., & Rage, J. C. (2003). Non‐erycine Booidea from the Oligocene and Miocene of Europe (p. 111). Institute of Systematics and Evolution of Animals.
Tsuihiji, T., Kearney, M., & Rieppel, O. (2012). Finding the neck–trunk boundary in snakes: Anteroposterior dissociation of myological characteristics in snakes and its implications for their neck and trunk body regionalization. Journal of Morphology, 273(9), 992–1009. https://doi.org/10.1002/jmor.20037.
Ullherr, M., & Zabler, S. (2019). SNR spectra as a quantitative model for image quality in polychromatic X‐ray imaging. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 943, 162385. https://doi.org/10.1016/j.nima.2019.162385.
Vasilyan, D., Čerňanský, A., Szyndlar, Z., & Mörs, T. (2022). Amphibian and reptilian fauna from the early Miocene of Echzell, Germany. Fossil Record, 25(1), 99–145. https://doi.org/10.3897/fr.25.83781.
Vasse, J., & Beaupain, D. (1981). Erythropoiesis and haemoglobin ontogeny in the turtle Emys orbicularis L. Development, 62(1), 129–138. https://doi.org/10.1242/dev.62.1.129.
Vitt, L. J., & Caldwell, J. P. (2009). Herpetology: An introductory biology of amphibians and reptiles (p. 697). Academic Press.
Voris, H. K. (1975). Dermal scale–vertebra relationships in sea snakes (Hydrophiidae). Copeia, 1975, 746–757.
Woltering, J. M., Vonk, F. J., Müller, H., Bardine, N., Tuduce, I. L., de Bakker, M. A. G., Knöchel, W., Sirbu, I. O., Durston, A. J., & Richardson, M. K. (2009). Axial patterning in snakes and caecilians: Evidence for an alternative interpretation of the Hox code. Developmental Biology, 332(1), 82–89. https://doi.org/10.1016/j.ydbio.2009.04.031.
Zakani, S., Rudan, J. F., & Ellis, R. E. (2017). Translatory hip kinematics measured with optoelectronic surgical navigation. International Journal of Computer Assisted Radiology and Surgery, 12, 1411–1423. https://doi.org/10.1007/s11548-017–1629-y.
معلومات مُعتمدة: The Scientific and Technological Research Council of Turkey
فهرسة مساهمة: Keywords: Natrix; SEM; micro‐CT; snake; vertebra
تواريخ الأحداث: Date Created: 20230925 Date Completed: 20240410 Latest Revision: 20240410
رمز التحديث: 20240410
DOI: 10.1002/ar.25328
PMID: 37746926
قاعدة البيانات: MEDLINE
الوصف
تدمد:1932-8494
DOI:10.1002/ar.25328